New methods boost researchers' analytical powers by incorporating prior knowledge about SNPs function

As scientists probe and parse the genetic bases of what makes a human a human (or one human different from another), and vigorously push for greater use of whole genome sequencing, they find themselves increasingly threatened by the unthinkable: Too much data to make full sense of.

In a pair of papers published in the April 25, 2013 issue of PLOS Genetics, two diverse teams of scientists, both headed by researchers at the University of California, San Diego School of Medicine, describe novel statistical models that more broadly and deeply identify associations between bits of sequenced DNA called single nucleotide polymorphisms or SNPs and say lead to a more complete and accurate understanding of the genetic underpinnings of many diseases and how best to treat them.

"It's increasingly evident that highly heritable diseases and traits are influenced by a large number of genetic variants in different parts of the genome, each with small effects," said Anders M. Dale, PhD, a professor in the departments of Radiology, Neurosciences and Psychiatry at the UC San Diego School of Medicine. "Unfortunately, it's also increasingly evident that existing statistical methods, like genome-wide association studies (GWAS) that look for associations between SNPs and diseases, are severely underpowered and can't adequately incorporate all of this new, exciting and exceedingly rich data."

Dale cited, for example, a recent study published in Nature Genetics in which researchers used traditional GWAS to raise the number of SNPs associated with primary sclerosing cholangitis from four to 16. The scientists then applied the new statistical methods to identify 33 additional SNPs, more than tripling the number of genome locations associated with the life-threatening liver disease.

Generally speaking, the new methods boost researchers' analytical powers by incorporating a priori or prior knowledge about the function of SNPs with their pleiotrophic relationships to multiple phenotypes. Pleiotrophy occurs when one gene influences multiple sets of observed traits or phenotypes.

Dale and colleagues believe the new methods could lead to a paradigm shift in CWAS analysis, with profound implications across a broad range of complex traits and disorders.

"There is ever-greater emphasis being placed on expensive whole genome sequencing efforts," he said, "but as the science advances, the challenges become larger. The needle in the haystack of traditional GWAS involves searching through about one million SNPs. This will increase 10- to 100-fold, to about 3 billion positions. We think these new methodologies allow us to more completely exploit our resources, to extract the most information possible, which we think has important implications for gene discovery, drug development and more accurately assessing a person's overall genetic risk of developing a certain disease."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study uncovers a previously unknown genetic link to autism spectrum disorder