UC Davis scientists detect novel molecular target for multiple sclerosis

Working with lab mice models of multiple sclerosis (MS), UC Davis scientists have detected a novel molecular target for the design of drugs that could be safer and more effective than current FDA-approved medications against MS.

The findings of the research study, published online today in the journal EMBO Molecular Medicine could have therapeutic applications for MS as well as cerebral palsy and leukodystrophies, all disorders associated with loss of white matter, which is the brain tissue that carries information between nerve cells in the brain and the spinal cord.

The target, a protein referred to as mitochondrial translocator protein (TSPO), had been previously identified but not linked to MS, an autoimmune disease that strips the protective fatty coating off nerve fibers of the brain and spinal cord. The mitrochronical TSPO is located on the outer surface of mitochondria, cellular structures that supply energy to the cells. Damage to the fatty coating, or myelin, slows the transmission of the nerve signals that enable body movement as well as sensory and cognitive functioning.

The scientists identified mitochondrial TSPO as a potential therapeutic target when mice that had symptoms of MS improved after being treated with the anti-anxiety drug etifoxine, which interacts with mitochondrial TSPO. When etifoxine, a drug clinically available in Europe, was administered to the MS mice before they had clinical signs of disease, the severity of the disease was reduced when compared to the untreated lab animals. When treated at the peak of disease severity, the animals' MS symptoms improved.

"Etifoxine has a novel protective effect against the loss of the sheath that insulates the nerve fibers that transmit the signals from brain cells," said Wenbin Deng, principal investigator of the study and associate professor of biochemistry and molecular medicine at UC Davis.

"Our discovery of etifoxine's effects on an MS animal model suggests that mitochondrial TSPO represents a potential therapeutic target for MS drug development," said Deng.

"Drugs designed to more precisely bind to mitochondrial TSPO may help repair the myelin sheath of MS patients and thereby even help restore the transmission of signals in the central nervous system that enable normal motor, sensory and cognitive functions," he said.

Deng added that better treatments for MS and other demyelinating diseases are needed, especially since current FDA-approved therapies do not repair the damage of immune attacks on the myelin sheath.

The UC Davis research team hopes to further investigate the therapeutic applications of mitochondrial TSPO in drug development for MS and other autoimmune diseases. To identify more efficacious and safer drug candidates, they plan to pursue research grants that will enable them to test a variety of pharmacological compounds that bind to mitochondrial TSPO and other molecular targets in experimental models of MS and other myelin diseases.

The journal paper is entitled, "A TSPO ligand is protective in a mouse model of multiple sclerosis."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Saturated fats accelerate neurodegeneration in multiple sclerosis