TSRI scientists identify small molecules to control genetic defect responsible for muscular dystrophy

For the first time, scientists from the Florida campus of The Scripps Research Institute (TSRI) have identified small molecules that allow for complete control over a genetic defect responsible for the most common adult onset form of muscular dystrophy. These small molecules will enable scientists to investigate potential new therapies and to study the long-term impact of the disease.

"This is the first example I know of at all where someone can literally turn on and off a disease," said TSRI Associate Professor Matthew Disney, whose new research was published June 28, 2013, by the journal Nature Communications. "This easy approach is an entirely new way to turn a genetic defect off or on."

Myotonic dystrophy is an inherited disorder, the most common form of a group of conditions called muscular dystrophies that involve progressive muscle wasting and weakness.

Myotonic dystrophy type 1 is caused a type of RNA defect known as a "triplet repeat," a series of three nucleotides repeated more times than normal in an individual's genetic code. In this case, a cytosine-uracil-guanine (CUG) triplet repeat binds to the protein MBNL1, rendering it inactive and resulting in RNA splicing abnormalities.

To find drug candidates that act against the defect, Disney and his colleagues analyzed the results of a National Institutes of Health (NIH)-sponsored screen of more than 300,000 small molecules that inhibit a critical RNA-protein complex in the disease.

The team divided the NIH hits into three "buckets"-the first group bound RNA, the second bound protein, and a third whose mechanism was unclear. The researchers then studied the compounds by looking at their effect on human muscle tissue both with and without the defect.

Startlingly, diseased muscle tissue treated with RNA-binding compounds caused signs of the disease to go away. In contrast, both healthy and diseased tissue treated with the protein-binding compounds showed the opposite effect-signs of the disease either appeared (in healthy tissue) or became worse.

The new compounds will serve as useful tools to study the disease on a molecular level. "In complex diseases, there are always unanticipated mechanisms," Disney noted. "Now that we can reverse the disease at will, we can study those aspects of it."

In addition, Disney said, with the new discovery, scientists will be able to develop a greater understanding of how to control RNA splicing with small molecules. RNA splicing can cause a host of diseases that range from sickle-cell disease to cancer, yet prior to this study, no tools were available to control specific RNA splicing.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New study links genetic mosaicism to lower Alzheimer’s risk in adults with Down syndrome