Scientists discover bacterium that stores biodegradable plastic

In Bolivia, in the largest continuous salt desert in the world, researchers from the Polytechnic University of Catalonia have found a bacterium that stores large amounts of PHB, a prized polymer. This biodegradable plastic is used by the food and pharmaceutical industries, for example to produce nanospheres to transport antibiotics.

In the quest for natural polymers to substitute for petroleum-based plastics, scientists have recently discovered that a microorganism in South America produces poly-beta-hydroxybutyrate (PHB), a biodegradable compound of great utility for the food, pharmaceutical, cosmetic and packaging industries.

The bacterium in question is Bacillus megaterium Uyuni S29, a strain that produces the largest amount of polymer of the genus. It has been found in the water 'eyes' of the famous Salar de Uyuni or Uyuni salt flat, in Bolivia.

"These are very extreme environments, which facilitate intracellular accumulation of PHB, a reserve material used by bacteria in times when nutrients are scarce," Dr Marisol Marqu-s, microbiologist at the Polytechnic University of Catalonia (UPC, Spain), explains to SINC.

Scientists from the UPC and the Graz University of Technology in Austria have successfully made the bacillus produce significant quantities of the compound in the laboratory in cultivation conditions similar to those used in industry. The technique is published in the journals Food Technology & Biotechnology and Journal of Applied Microbiology.

"The resulting biopolymer has thermal properties different from conventional PHBs, which makes it easier to process, independently of its application," Marqu-s goes on.

The researcher recognises that the costs of producing biopolymers are, in general, "still high and not competitive when compared with conventional polymers, although progress is being made in this regard."

The team has managed to reduce PHB's high molecular weight for the first time, using lipase enzymes, which break up fats, as well as using the biopolymer to form nano- and microspheres loaded with antibiotic to control their spread throughout the organism.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Limiting fast-food outlets can reduce childhood overweight and obesity