Scientists use fMRI and EEG to unlock one of the human brain's mysteries

Physicists and neuroscientists from The University of Nottingham and University of Birmingham have unlocked one of the mysteries of the human brain, thanks to new research using functional Magnetic Resonance Imaging (fMRI) and electroencephalography (EEG).

The work will enable neuroscientists to map a kind of brain function that up to now could not be studied, allowing a more accurate exploration of how both healthy and diseased brains work.

Functional MRI is commonly used to study how the brain works, by providing spatial maps of where in the brain external stimuli, such as pictures and sounds, are processed. The fMRI scan does this by detecting indirect changes in the brain's blood flow in response to changes in electrical signalling during the stimulus.

A signal change that happens after the stimulus has stopped is also observed with the fMRI scan. This is called the post-stimulus signal and up until now it has not been used to study how the brain works because its origin was uncertain.

In novel experiments, the research team has now combined fMRI techniques with EEG, which measures electrical activity in the brain, to show that the post-stimulus signal also actually reflects changes in brain signalling.

18 healthy volunteers were monitored by using EEG to measure the electrical activity generated by their brains' neurons (the signalling cells) while simultaneously recording fMRI measurements. A stimulus of electrical pulses was used to activate the part of the brain that controls movement in the right thumb.

The scientists then compared the EEG and fMRI signals and found that they both vary in the same way after the stimulus stops. This provides compelling evidence that the post-stimulus fMRI signal is a measure of neuronal activity rather than just changes in the brain's blood flow. Curiously, the team also found the post-stimulus fMRI signal was not consistent, even though the stimulus input to the brain was the same each time. This natural variability in the brain response was also reflected by the EEG activity and the researchers suggest that this signal might help the brain make the transition from processing stimuli back to their internal thoughts in different ways.

Dr Karen Mullinger from The University of Nottingham's Sir Peter Mansfield Magnetic Resonance Centre said: "This work opens a new window of time in the fMRI signal in which we can look at what the brain is doing. It may also open up new research avenues in exploring the function of the healthy brain and the study of neurological diseases."

Dr Stephen Mayhew from Birmingham University Imaging Centre said "We do not know what the exact role of the post-stimulus activity is or why this response is not always consistent when the stimulus input to the brain is the same. We have already secured funding through the Birmingham-Nottingham Strategic Collaboration Fund to continue this research into further understanding of human brain function using combinations of neuroimaging methods."

Director of the Sir Peter Mansfield Magnetic Resonance Centre, Professor Peter Morris, said: "Functional magnetic resonance imaging is the main tool available to cognitive neuroscientists for the investigation of human brain function. The demonstration in this paper, that the secondary fMRI response (the post-stimulus undershoot) is not simply a passive blood flow response, but is directly related to synchronous neural activity, as measured with EEG, heralds an exciting new chapter in our understanding of the workings of the human mind."

Comments

  1. Alistair Lowe Alistair Lowe United Kingdom says:

    Perhaps the difference in the post-stimulus has some correlation to what the subject was doing/thinking before the induced external stimulus? Once a computer finishes a routine, it unloads what it has just done and returns to previous operations and so naturally this transition could vary depending on what was going-on previously.

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New brain stem cell discovery could usher in better treatments for glioblastoma