UCLA researchers develop treatment approach for breast cancer metastasized to brain

Researchers at UCLA's Jonsson Comprehensive Cancer Center (JCCC) have successfully combined cellular therapy and gene therapy in a mouse model system to develop a viable treatment strategy for breast cancer that has metastasized, or spread, to the patient's brain. The laboratory study was led by Carol Kruse, professor of neurosurgery and member of JCCC and the UCLA Brain Research Institute. The study was published in the journal Clinical Cancer Research on August 1, 2013.
Breast cancer is the most common form of cancer in women, and metastasis is a major cause of health deterioration and death from the disease. Management of metastasis is difficult for several reasons. The circulatory network known as the blood-brain barrier prevents many anti-cancer drugs from reaching the areas of the brain to which cancer has spread. Also, the tendency of metastasis to spring up in multiple places in the brain simultaneously makes current treatments such as radiation challenging.

Cellular therapy is a type of immunotherapy (treatment that involves the immune system) that uses T cells, the foot soldiers of the immune system, which have been sensitized in the laboratory to kill breast cancer cells. Those T cells are injected into the part of the brain to which the cancer has spread. The research shows the T cells move through tissue and can recognize and then directly kill the tumor cells.

With the gene therapy, cancer cells are killed by a drug called 5-flurocytosine (5-FC) because they have been gene-modified. To get the gene into the cancer cells, the researchers first insert the gene into a virus that can infect (penetrate and spread among) the tumor cells. After the virus has infected the cells, nontoxic 5-FC is given to the patient. Tumor cells infected by the virus convert the nontoxic drug to a toxic form that kills the cancer cells. Dr. Noriyuki Kasahara, a professor in the department of medicine, developed the gene therapy method in his laboratory.

While the two methods alone each show efficacy in mouse models, the greatest reduction in metastatic brain tumor size happened when the cellular and gene therapies were combined.

"There is a significant lack of Federally funded research addressing translational studies on brain metastases of systemic cancers," Dr. Kruse said, "even though metastatic brain tumors occur ten times more frequently than primary brain tumors in humans. These patients have a dismal prognosis because the brain represents a 'sanctuary site' where appropriate access by many chemotherapeutics is ineffective. Our research addresses this unmet need."

Both experimental therapies are being tested individually in ongoing clinical trials for primary malignant brain tumors, which presents a unique opportunity for rapid translation of this technology from the laboratory to the clinic for breast and other types of cancer that metastasize to the brain.

Source: UCLA

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
High blood pressure may not harm brains of 90-year-olds, study finds