A*STAR scientists discover potential target to weed out progression of cancer

This discovery could eradicate cancers more effectively and prevent relapses

Scientists at A*STAR have discovered an enzyme, Wip1 phosphatase, as a potential target to weed out the progression of cancer. Although studies in the past have revealed that this enzyme plays a critical role in regulating the budding of tumours, scientists have for the first time unearthed a mechanism for its mode of action.

The research was conducted by Dr Dmitry Bulavin and his team at A*STAR's Institute of Molecular and Cell Biology (IMCB), with their findings published in the 14 October 2013 issue of the prestigious scientific journal, Cancer Cell.

The team discovered that Wip1 phosphatase is a key factor that causes point mutations to sprout in human cancers. These types of mutations stem from errors that are made during DNA replication in the body, causing one base-pair in the DNA sequence to be altered.

These mutations can cause cancers to take root, or to become resilient to treatment. By using drugs to inhibit the action of Wip1 phosphatase, cancer growth can be stunted and tumours can be cured without developing resistance. This is a ground-breaking finding that sheds light on how mutations in cancer can potentially be wiped out with drugs, allowing cancers to be treated and eliminated effectively, preventing relapses of tumour growth.

Dr Dmitry Bulavin said, "Our work on Wip1 phosphatase for over a decade has now revealed several key features of this molecule. Our current findings strongly support the use of an anti-Wip1 drug for cancer treatment in order to reduce a high frequency of mutations in the genome, which is one of the main drivers of tumour relapses."

Prof Hong Wan Jin, Executive Director of IMCB, said, "Dmitry has been the pioneering driver in the mechanistic study of Wip1 phosphatase, and this discovery is monumental in providing novel understanding on the role of Wip1 in cancer at the genomic and systems levels. I am confident that his team at IMCB can further their work in cancer research to offer new approaches for potential drugs against this target."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study unveils key mechanism behind prostate cancer's uncontrolled growth