Buck Institute research provides method to study sarcopenia

Buck Institute research involves first genome-wide DNA methylation study in disease-free tissue

Our epigenome is a set of chemical switches that turn parts of our genome off and on at strategic times and locations. These switches help alter the way our cells act and are impacted by environmental factors including diet, exercise and stress. Research at the Buck Institute reveals that aging also effects the epigenome in human skeletal muscle. The study, appearing on line in Aging Cell, provides a method to study sarcopenia, the degenerative loss of muscle mass that begins in middle age.

The results came from the first genome-wide DNA methylation study in disease-free individuals. DNA methylation involves the addition of a methyl group to the DNA and is involved in a particular layer of epigenetic regulation and genome maintenance. In this study researchers compared DNA methylation in samples of skeletal muscle taken from healthy young (18 - 27 years of age) and older (68 - 89 years of age) males. Buck faculty and lead scientist Simon Melov, PhD, said researchers looked at more than 480,000 sites throughout the genome. "We identified a suite of epigenetic markers that completely separated the younger from the older individuals - there was a change in the epigenetic fingerprint," said Melov. "Our findings were statistically significant; the chances of that happening are infinitesimal."

Melov said scientists identified about six-thousand sites throughout the genome that were differentially methylated with age and that some of those sites are associated with genes that regulate activity at the neuromuscular junction which connects the nervous system to our muscles. "It's long been suspected that atrophy at this junction is a weak link in sarcopenia, the loss of muscle mass we get with age," said Melov. "Maybe this differential methylation causes it. We don't know."

Studying the root causes and development of sarcopenia in humans is problematic; the research would require repeated muscle biopsies taken over time, something that would be hard to collect. Melov says now that the epigenetic markers have been identified in humans, the goal would be to manipulate those sites in laboratory animals. "We would be able to observe function over time and potentially use drugs to alter the rate of DNA methylation at those sites," he said. Melov says changes in DNA methylation are very common in cancer and that the process is more tightly controlled in younger people.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New long COVID index highlights five symptom subtypes