Immunity is what stops you dying from a common cold or a tiny pinprick. Differences in resistance or tolerance to disease influence who catches the bug that's going around the office, or which species succumb to the deadly fungus devastating frogs around the world. But immunity involves more than just the immune cells that recognize and hunt down pathogens. It is influenced by the host's health, physiology, behavior, and environment. And underlying all these processes and their intricate interactions are the genes that govern their function.
This broader conception of the genetic underpinnings of host defenses against pathogens reflects the increasing complexity of ideas in this field. Scientists are turning to a wide variety of organisms and approaches to tame this complexity and, in some cases, to use their findings to improve human health. To encourage the emerging conversation between disciplines and to catalyze new advances, the Genetics Society of America journals GENETICS and G3: Genes|Genomes|Genetics have launched an ongoing collection of research articles that address the genetics of immunity. Several articles from the collection are published today in a special section of the June issues of both journals, accompanied by a commentary article that places the articles in context.
So far, articles published in the collection include research on fruit flies, an important genetic model organism, addressing the ways in which the demands of mating and reproduction compete with immunity and how immunity changes with age. Other articles examine crucial applied questions, such as how genes influence autoimmune thyroid diseases, or which chickens are the most resistant to colonization by Campylobacter jejuni, one of the most common causes of food-borne illness in humans. Many more articles are listed in the collection, which will be bolstered by new articles as they are published.
"Defense against infection is profoundly important for our health, and for the agriculture and ecosystems that sustain us. But it is being increasingly recognized that immunity has complex determinants, so genetic research in this area is becoming broader and more diverse. We hope this collection will become a home for much exciting and significant research in this field in the future." says Brian Lazzaro, biologist at Cornell University and one of the editors of the new collection.