Researchers reveal important clue for treating absence seizures

A group of Korean researchers have succeeded in revealing a principle mechanism of a neural network in the human brain, which will provide an important clue to potential treatments for absence seizures.

Absence seizures are believed to be elicited by T-type calcium channels in the thalamic reticular nucleus of the brain that regulate influxes of calcium. These channels enable thalamic reticular nucleus neurons to generate burst firing, leading the neurons to enter a hyper-excited state.

In order to identify the relationship between burst firing and absence seizures, the researchers conducted an experiment to induce absence seizures in mice using gene targeting techniques to delete the T-type calcium channel CaV3.3. The results showed that mice that received a complete genetic deletion of the T-type calcium channel, which in turn suppressed burst firing in the thalamic reticular nucleus, exhibited an increased frequency of absence seizures.

Moreover, the researchers observed for the first time ever that tonic firing also increased in such mice. The study was the first to discover that tonic firing plays a key role in the induction of absence seizure, which contradicts the existing hypothesis and carries significant implications for absence seizure treatment research.

The study is meaningful in respect to the fact that it calls into question the role of the T-type calcium channel in the reticular thalamus, and is expected to provide an important theoretical foundation for understanding its role in the mechanism of absence seizures, as well as developing effective treatment methods for absence epilepsy.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study reveals the power of sleep in enhancing motor learning for individuals with brain injury