New automaton model simulates various scenarios of tumor growth

Cancer constantly wages war on the human body. Battles are won, lost or sometimes end in a stalemate. In pancreatic cancer, this stalemate—known as tumor dormancy—can last up to 25 years before becoming aggressively malignant, a phenomena that is poorly understood.

A new computational model developed in the laboratory of Salvatore Torquato, a Professor of Chemistry at Princeton University, may help illuminate the conditions surrounding tumor dormancy and the switch to a malignant state. Published today in PLOS ONE, the so-called cellular automaton model simulated various scenarios of tumor growth leading to tumor suppression, dormancy or proliferation.

"The power of the model is that it lets people to test medically realistic scenarios," Torquato said. In future collaborations, these scenarios could be engineered in laboratory experiments and the observed outcomes could be used to calibrate the model.

For each scenario, a set of rules is imposed on the virtual cell population. Rules are possible interactions, such as neighboring cell death or immune system suppression, that dictate cell division through probabilities derived from past experimental data. Once the researchers programmed the rules, they watched as the simulated competition unfolded between the tumor and the environmental factors that may suppress its growth.

"We were very surprised to observe this phenomena where the tumor all of a sudden began to rapidly divide," said Duyu Chen, graduate student in the Torquato lab and lead author on the article. This was the first time that the emergent switch behavior, which has been observed clinically, occurred spontaneously in a model, Chen said.

The researchers evaluated a number of factors that could affect tumor cell growth including phenotypic changes, mechanical properties and the rate and strength of suppression factors such as the immune system. One of the model's findings was the likely suppression of tumors in harsh environments, characterized by high density and pressure.

The research team also predicted that if the number of actively dividing cells within the proliferative rim reached a certain critical level, the tumor was very likely to begin rapidly growing. This result could provide insight into early cancer treatment, Chen said.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New algorithm identifies cells responsible for aggressive tumor growth