SCN clock isn't necessary to align body rhythms with light-dark cycle, study reveals

New research in The FASEB Journal suggests that the suprachiasmaticus nucleus clock isn't necessary to align circadian rhythms with the light-dark cycle

Circadian clocks regulate functions ranging from alertness and reaction time to body temperature and blood pressure. New research published in the November 2014 issue of The FASEB Journal further adds to our understanding of the circadian rhythm by suggesting that the suprachiasmaticus nucleus (SCN) clock, a tiny region of the hypothalamus considered to be the body's "master" timekeeper, is not necessary to align body rhythms with the light-dark cycle. This challenges and disproves the commonly held notion that circadian rhythms were strictly organized in a hierarchical manner, and that light resets the master clock in the SCN, which then coordinates the other, subordinate clocks in peripheral tissues. Several metabolic and psychiatric diseases are associated with circadian rhythm and sleep disturbances, and this research opens the doors toward an improved understanding of these disorders.

"Our study reveals a federal organization of internal clock synchronization with the environment," said Henrik Oster, Ph.D., a researcher involved in the work from the Medical Department at the University of Lübeck in Lübeck, Germany. "This suggests that resetting specific peripheral tissue clocks may be an underestimated target for restoring circadian alignment, and possibly to counteract disorders associated with circadian rhythm disruption."

To make this discovery, Oster and colleagues bred mice in which the molecular circadian clock had been deleted specifically in SCN pacemaker neurons, while leaving clocks in peripheral tissues untouched. These mice, as well as control mice with intact central and peripheral clocks, were then subjected to different lighting conditions. In a rhythmic light-dark environment, gene expression analysis revealed that both groups displayed rhythmic behavior, glucocorticoid hormone rhythms and clock gene expression rhythms in peripheral tissues such as liver or adrenal. When the mice were subjected to constant darkness conditions, behavioral rhythms in the SCN clock-less mice were immediately lost, while endocrine and molecular rhythms gradually dampened over the course of several days. Control mice retained stable rhythms at all levels throughout the experiment. Results suggest a revised model of circadian entrainment, with the adaptation of the internal clock by external time cue, resulting in a mode of photic entrainment in which light can in parallel reset central and peripheral clocks.

"For a long time, we've thought that the central clock in our brains is necessary to keep the other clocks in our body in time," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "And this still correct most of the time in most people. This research is important, however, because it not only shows us what might be going wrong in folks with circadian-related disorders, but also helps us to understand how we can manipulate peripheral clocks to help these people."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Blood pressure fluctuations linked to problems with thinking and memory skills