IU School of Medicine researchers identify new protein that can control diabetes

Indiana University School of Medicine researchers have identified a small protein with a big role in lowering plasma glucose and increasing insulin sensitivity. Their research appeared online today in Diabetes, the journal of the American Diabetes Association.

The report indicates that Sestrin 3 plays a critical role in regulating molecular pathways that control the production of glucose and insulin sensitivity in the liver, making it a logical target for drug development for type 2 diabetes and metabolic syndrome, which can produce increased blood pressure, abnormal cholesterol levels and insulin resistance.

Sestrin 3 is a member of a small family of proteins that have long been known to suppress oxidative stress and regulate normal cellular activity, thus making it an important regulator of metabolic homeostasis.

Lead author X. Charlie Dong, Ph.D., associate professor of biochemistry and molecular biology at the IU School of Medicine, and colleagues monitored blood glucose levels and liver insulin sensitivity in mice with the endogenous Sestrin 3 protein and mice genetically engineered to not produce the protein.

To examine the regulatory effects of Sestrin 3, the animals were fed a diet with 18 percent of its calories from fat or a high-fat diet with 60 percent of calories from fat. The mice without the Sestrin 3 protein had elevated fasting blood glucose levels, indicative of impaired liver insulin sensitivity or poorly regulated glucose metabolism. Both insulin and glucose tolerance tests were significantly better in the mice with the Sestrin 3 protein, leading researchers to believe that Sestrin 3 plays a critical role in hepatic insulin sensitivity and glucose metabolism.

"We wanted to show that Sestrin 3 had critical liver-specific functions," Dr. Dong said. "This is a very fascinating protein. It's not very big, but it functions in a very dynamic manner controlling glucose production and insulin sensitivity. It is an important regulator for glucose homeostasis."

Dr. Dong said the findings have significant implications in the prevention and treatment of type 2 diabetes and could prove to be useful targets for modulation of insulin sensitivity and glucose homeostasis and as a target for therapeutic agents to increase liver function to prevent diabetes.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Sugar-sweetened drinks linked to 1 in 10 new diabetes cases