New findings could help develop therapeutic options for glycogen storage disease

Findings are informing human research into rare, sometimes fatal glycogen storage disease

Glycogen storage disorders, which affect the body's ability to process sugar and store energy, are rare metabolic conditions that frequently manifest in the first years of life. Often accompanied by liver and muscle disease, this inability to process and store glucose can have many different causes, and can be difficult to diagnose. Now, researchers at the University of Missouri who have studied enzymes involved in metabolism of bacteria and other organisms have catalogued the effects of abnormal enzymes responsible for one type of this disorder in humans. Their work could help with patient prognosis and in developing therapeutic options for this glycogen storage disease.

"In February of this year, I found an article in the www.nejm.org="">New England Journal of Medicine (NEJM) that caught my eye," said Lesa Beamer, associate professor of chemistry and biochemistry at MU. "It was a landmark study identifying a new, inherited metabolic disorder in humans called phosphoglucomutase 1 (PGM1) deficiency, and affects the human versions of the very same enzymes I had studied."

The NEJM study was the first to characterize the multiple effects of the disorder in humans and pinpointed the enzyme involved. The disorder, described initially in 21 patients, is considered rare but will likely be found more often now that genetic tests have been developed. According to the study, the disease often affects patients in early childhood or adolescence, and can cause hypoglycemia, muscle disease, hormonal abnormalities, and cardiac problems. Many patients exhibit exercise intolerance and, because the condition could not previously be diagnosed, these problems sometimes led to early deaths.

Beamer's lab researches similar enzymes in bacteria that play important roles in carbohydrate (sugar) metabolism, including sugars like glucose. These enzymes perform the same chemical reaction as the human protein involved in the newly identified inherited disease, and share many other similarities.

"Once the disease involving the human equivalent had been identified, we were able to put the knowledge we've gained to immediate use," Beamer said. "Using the information provided by the NEJM study, we recreated the mutated proteins that cause the disorder in a test tube, and conducted detailed biochemical analyses. Our study was the first to systematically characterize and index these mutant proteins for comparison with the symptoms in human patients. Because patient studies are complex and time-consuming, our biochemical analyses are proving essential to understanding the complicated clinical presentation of this inherited disorder."

The early-stage results of this research are promising. If additional studies are successful, Beamer believes that her bacterial enzyme research could assist with further research studying the development of human genetic health tests and therapeutics within the next few years. Her lab currently is collaborating with human medical researchers to "fast track" the study of this rare disease.

Beamer holds joint appointments in the Department of Chemistry in the College of Arts and Science and the Department of Biochemistry in the School of Medicine and the College of Agriculture, Food and Natural Resources at MU.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
NIH grant supports study of copper's role in killing harmful bacteria