Researchers explain interaction between HNRNPA2B1 protein and pancreatic cancer development

Researchers from the University of Barcelona (UB) have described an interaction between the protein HNRNPA2B1 and pancreatic cancer development which remained unknown. The study, published in the journal Gastroenterology, has proved in human cancer cell lines that this protein is essential to the correct activity of the oncogenic protein KRAS, related to cancer start and development. The interaction between HNRNPA2B1 and the protein codified by the gene KRAS is a potential therapeutic target against pancreatic cancer, one of the tumours with a worse prognosis.

The study was led by Neus Agell, professor from the Department of Cell Biology, Immunology and Neurosciences of the Faculty of Medicine of UB and researcher at the August Pi i Sunyer Biomedical Research Institute (IDIBAPS). The first author of the study is Carles Barceló, PhD Student at the former UB Department. Researchers from the Catalan Institute of Oncology (ICO), the Bellvitge Biomedical Research Institute (IDIBELL), the Spanish National Cancer Research Center (CNIO) and the Dana-Farber Cancer Institute of the Harvard Medical School (USA) participated in the study too.

Alternative strategy to block the KRAS gene

Mutations of the KRAS gene occur in over 90% of pancreatic carcinomas. The gene helps the cell to interpret what is happening outside and indicates what actions must be done next, for instance to reproduce itself or to die. Oncogenic mutations of the gene occur mostly in pancreatic, colon and adenocarcinomas in the lung. So, it always signals cells to proliferate, independently of the information that comes from outside.

Scientists have unsuccessfully tried to inhibit KRAS during more than thirty year in order to stop tumour development. "The strategy applied by the research team is to know better how the cell regulates its activity and how KRAS acts; therefore, if we are not able to inhibit directly the action of oncogenic KRAS, we try to hamper its interaction with other proteins in order to avoid its action and influence on tumours", explains Neus Agell.

Reduction of tumour growth

Researchers, together with the Proteomics Unit of the Scientific and Technological Centres of the UB (CCiTUB), studied the proteins that interact with KRAS in cancer cells. Among candidate proteins, the protein HNRNPA2B1 was selected. The next step was to knock down the protein in two different cell lines of pancreatic ductal adenocarcinoma (PDAC) —the most common type of pancreatic cancer— in order to observe the effects on tumour growth. Down-regulation took place, first, in cancer cell lines than need mutated KRAS gene in order to develop —they are named KRAS-dependent cell lines— and, second, in cell lines where the tumour can develop without KRAS. "Silenced HNRNPA2B1 protein reduced cancer cell proliferation and growth and increased cell death, but only in KRAS-dependent cell lines", points out Neus Agell.

The effects were repeated later when these human cancer cells were injected in mice. Again, when the protein HNRNPA2B1 was silenced, KRAS-dependent cell lines showed a significant reduction of tumour growth.

In a search for potential therapeutic targets

Results obtained from this study can be added to the ones got in a previous work in which the research team found other molecules which are also involved in regulating KRAS activity in the cell. To be exact, researchers found an enzyme that plays a key role in a process named phosphorylation, in which a phosphate is added to KRAS gene. "We proved in mouse cells that if the enzyme is inhibited, KRAS signalling is reduced and cell's oncogenicity decreases too. Consequently, we can approach KRAS in two different ways: by depleting its interaction with the protein HNRNPA2B1 or by preventing phosphorylation", affirms Montserrat Jaumot, UB researcher who also signs the scientific paper.

The nest step to be made by the UB research team is to know better how KRAS alterations work in order to design drugs able to block them. "In order to break these interactions, it is necessary to know in detail what happens at biochemical and molecular levels when KRAS oncogenic functions take place", concludes Neus Agell.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New research unravels mitochondria's role in breast cancer metastasis