Triple hormone reduces body weight, improves insulin sensitivity

Recently, the researchers had constructed several single molecules with dual hormone action. Now, for the first time, the researchers succeeded in designing a substance that combines three metabolically active hormone components (GLP-1, GIP and glucagon) and offers unmatched potency to fight metabolic diseases in pre-clinical trials.

The team headed by physician scientist Matthias Tschöp (Helmholtz Diabetes Center at HMGU and Metabolic Diseases Chair at TUM) and peptide chemist Richard DiMarchi (Indiana University) has been cooperating for almost a decade to invent improved therapeutics for type 2 diabetes and obesity. One of their novel approaches is to design molecules that combine the effects of specific metabolic hormones. In recent years, the scientists succeeded in developing hormone-like molecular structures that incorporate efficacy of two such messengers and, consequently, can trigger more significant metabolic improvements than was previously possible with known medicinal approaches.

Triple hormone reduces body weight even more effectively and improves insulin sensitivity

The interdisciplinary team led by Tschöp and DiMarchi is now presenting a triple hormone that dramatically reduces blood glucose, appetite, and body fat in animal models while also improving fat content in the liver, cholesterol levels and calorie burning even more effectively than with previously available single action or dual action molecules. The tri-agonist can reduce body weight by around 30 percent, roughly twice as much as a dual co-agonist at the same dose, while massively improving insulin sensitivity, essentially curing the rodents of obesity and diabetes.

Effect on receptors of GLP-1, GIP and glucagon

The triple hormone specifically and equally targets three receptors of GLP-1, GIP and glucagon. GLP-1 and GIP predominantly contribute to improved insulin release and a reduction of blood glucose levels. GLP-1 additionally curbs appetite. The third hormone, glucagon, primarily increases the long-term rate at which calories are burned and improves liver function. "This triple hormone effect in a single molecule shows results never achieved before. A number of metabolic control centers are influenced simultaneously, namely in the pancreas, liver, fat depots and brain," explains first author Brian Finan, who works as a chemist and pharmacologist at the Helmholtz Diabetes Center.

"This latest breakthrough shows us that we are on the right path to designing better treatments in the fight against obesity and diabetes," reports Tschöp. "Now the most important steps are clinical studies. In parallel, we are working on personalized medicines for individual patient needs, combining four, five, or more hormone components."

The objective of research at the Helmholtz Zentrum München, partner in the German Center for Diabetes Research (DZD), is to establish new approaches to the diagnosis, treatment and prevention of major widespread diseases and to further develop these as quickly as possible in the sense of translational research in order to produce concrete benefits for society.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
National Diabetes Prevention Program helps reduce medical costs