ULB researchers test therapeutic potential of cortical neurons developed in laboratory

Researchers at the ULB - IRIBHM and ULB Neuroscience Institute - have tested the therapeutic potential of cortical neurons generated at the laboratory, by transplantation in the brains of adult mice. Their research is published in the journal Neuron.

The work of ULB team of researchers led by Pierre Vanderhaeghen, Kimmo Michelsen and Sandra Acosta (WELBIO, IRIBHM and ULB Neuroscience Institute (UNI)), in collaboration with the laboratory of Afsaneh Gaillard (INSERM / U. Poitiers , France), opens new perspectives for the repair of damaged cell replacement cerebral cortex. This work is published February 4, 2015 in the prestigious journal Neuron1.

The cerebral cortex is the most complex and essential structure of our brain. The nerve cells or neurons that constitute it are the essential elements of its function, and the loss of cortical neurons is the cause of many neurological diseases (stroke, Alzheimer, ...).
The same ULB researchers had previously discovered how to generate in the laboratory cortical neurons from embryonic stem cells. But the question had remained widely open whether these findings could be applied to therapies for brain diseases by cell replacement. This is what the team has now tested successfully.

In this study, the researchers tested the therapeutic potential of cortical neurons generated in the laboratory, which were then transplanted into the brains of adult mice who had undergone brain damage resulting in massive neuronal loss in the visual cortex.

Remarkably, the researchers found that the transplanted neurons integrated effectively into the brain after injury, but most importantly they could connect with the host brain, as some of them even responded to visual stimuli, like the visual cortex.

This approach is still experimental (so far only performed in laboratory mice), and much research is needed before any clinical application in humans. Nevertheless, the success of these experiments combining cell engineering to generate nerve cells in a controlled and unlimited fashion, together with transplantation into damaged brain, opens new avenues to repair the brain following damage or degenration, such as following stroke or brain trauma.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Barcoding small extracellular vesicles with new CRISPR-based system