The Brain Prize awarded to four scientists for development of two-photon microscopy

The world's most valuable (€1m) neuroscience prize, The Brain Prize has been awarded, to four scientists, Winfried Denk and Arthur Konnerth (Germany), and Karel Svoboda and David Tank (USA), for the invention and development of two-photon microscopy, a transformative tool in brain research.

Two-photon microscopy is one of a handful of techniques which over the last 15 years have dramatically changed the way we study the brain. It combines advanced techniques from physics and biology, to allow scientists to examine the finest structures of the brain, in real time.

Using this revolutionary technology, researchers are now able to examine the function of individual nerve cells with high precision, especially how nerve cells communicate with each other in networks. This is a huge step forward in the understanding of the physical mechanisms of the human brain and in the understanding of how the brain's networks process information. Furthermore, researchers have been able to follow how connections between nerve cells are established in the developing brain.

It has led to identification of signaling pathways that control communication between nerve cells and provide the basis for memory, and it has enabled the study of nerve cell activity in those networks that controls vision, hearing and movement.

Professor Povl Krogsgaard-Larsen, Chair of Grete Lundbeck European Brain Research Foundation, which awards The Brain Prize, said:

"Thanks to these four scientists we're now able to study the normal brain's development and attempt to understand what goes wrong when we're affected by destructive diseases such as Alzheimer's and other types of dementia. More than that, we are able to visualise how adaptive behavioural changes affect the nerve cells of living animals.

Winfried Denk was the driving force behind the invention of two-photon microscopy. With David Tank and Karel Svoboda he used the technique as an innovative tool to visualise activity at the level of the neurons' fundamental signalling units, the "dendritic spines". Arthur Konnerth built on this invention to simultaneously monitor the activity in thousands of synaptic connections in living animals, and Karel Svoboda went on to use two-photon microscopy to map the changes that occur in the brain's network when animals learn new skills.

Since its invention in 1990, two-photon microscopy has formed the basis of more than 10,000 research papers, not only in brain research but also in other areas of physiology, embryology and tissue engineering

Professor Maiken Nedergaard, of the University of Rochester Medical School, New York, said:

"Traditionally, brain research made use of electrical measurements to study the activity of neurons. Two-photon microscopy has revolutionised the study of the brain, since it is now possible to map the function of the individual parts of a neuron as well as communication between several thousand neurons in live, behaving animals".

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Space experiment shows faster maturation of brain organoids in microgravity