Vanderbilt researchers join multi-center effort to accelerate development of potential Ebola therapy

Vanderbilt University researchers have joined a multi-center effort led by Pennsylvania-based Inovio Pharmaceuticals Inc. to accelerate development of potential antibody therapies against the often-lethal Ebola virus.

On Wednesday, Inovio announced it had been awarded an initial two-year, $21-million grant from the Defense Advanced Research Projects Agency (DARPA), part of the U.S. Department of Defense, to support the project. Vanderbilt's share of the grant is $1.3 million.

James Crowe Jr., M.D., and his colleagues will provide human monoclonal antibodies they've generated against the virus to Inovio Pharmaceuticals for further development.

A team led by Kathryn Edwards, M.D., the Sarah H. Sell and Cornelius Vanderbilt Professor of Pediatrics and director of the Vanderbilt Vaccine Research Program, will test the potential treatments for safety and efficacy in clinical trials.

"This major emergency financial commitment from the U.S. government allows us to pursue very rapid testing of new Ebola antibody treatments that we have been developing over the last few months," said Crowe, the Ann Scott Carell Professor and director of the Vanderbilt Vaccine Center.

"The speed with which we'll be able to transition from drug discovery to clinical trials is really unprecedented," he said.

The antibodies under development at Vanderbilt are not vaccines, which stimulate the body's own immune defenses against infectious diseases. Rather, injectable antibodies are treatments. Like heat-seeking missiles, they seek out and destroy their targets, in this case, the Ebola virus.

They are meant to provide short-term protection to health care workers and others at risk of exposure. They also could be used as antiviral drugs to treat patients who are already infected with Ebola virus.

Ebola has killed more than 10,000 people in West Africa in the past 12 months.

Crowe and his colleagues have developed a method for quickly generating large quantities of human antibodies against specific viral targets. The specific, "monoclonal" antibodies are generated by clones of a type of white blood cell that have been fused to myeloma (cancer) cells to form fast-growing "hybridomas."

"We're the only lab in the world that has a high-efficiency human hybridoma technique for isolating human monoclonal antibodies," he said.

The Inovio-led project is pursuing both a DNA-based and protein-based monoclonal antibody product as well as a potential DNA-based vaccine against Ebola virus infection.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Aircraft noise pollution harms arteries, but heart drugs show promise in animal model research