TSRI scientists awarded $2.2 million NIH grant to advance innovative approach to obesity treatment

Scientists from the Florida campus of The Scripps Research Institute (TSRI) have been awarded nearly $2.2 million by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (NIH) to advance an innovative approach to the treatment of obesity, a serious health problem that affects more than one-third of all Americans.

Anutosh Chakraborty, a TSRI assistant professor, is the principal investigator of the new five-year project.

Obesity, especially when combined with type 2 diabetes, leads to conditions including coronary heart disease, stroke, hypercholesterolemia, fatty liver, sleep apnea, osteoarthritis, certain cancers and various other diseases. If current trends continue, the number of Americans who are obese could reach 50 percent by 2030, according to the Trust for America's Health and the Robert Wood Johnson Foundation. According to Britain's Fiscal Times, the estimated cost of obesity in the United States is already $305.1 billion annually. Current medications have limited success.

In an effort to address this dilemma, scientists want to identify relevant proteins, especially enzymes, to target with new and more effective drug candidates.

"Anti-obesity drugs generally work on reducing how much you eat or absorb," Chakraborty said. "We investigate the problem from a different perspective."

Chakraborty and his colleagues discovered that an enzyme called inositol hexakisphosphate kinase-1 (IP6K1) plays a significant role in promoting the action of insulin on energy/fat storage. Mice without IP6K1 are not only lean on regular chow diet, they are also protected against high-fat-diet-induced obesity and insulin resistance.

"IP6K1 knockout mice eat a similar amount of food, yet are lean as they efficiently expend the extra energy," he said. "For us, that means that IP6K1 is the regulating factor when it comes to energy storage. Conversely, abnormal regulation of IP6K1 leads to obesity and insulin resistance. The new grant will allow us to identify the underlying mechanisms of how it works."

In addition to gaining a broader understanding of the fundamental mechanism by which IP6K1 regulates metabolism, Chakraborty and his colleagues—including Scripps Florida's Ted Kamenecka, assistant professor and associate scientific director of the Translational Research Institute, and Michael Cameron, assistant professor of molecular therapeutics—are working on the development of drugs which are expected to treat obesity, type 2 diabetes and other metabolic diseases via IP6K1 inhibition.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Obesity crisis in the U.S. expected to worsen by 2050