Discovery paves way for new therapeutic approaches to treat fatal leukemia in children

Acute lymphoblastic leukemia (ALL) is the most common type of cancer in children. It can occur in various forms, differing not only by specific changes in the genetic material of the leukemia cells but also by their response to therapies. Now, an international team of scientists from Berlin, Düsseldorf, Hannover, Heidelberg, Kiel, and Zurich have succeeded in decoding the molecular characteristics of an as yet incurable subtype of leukemia, paving the way for new therapeutic approaches. Their results have been published in the current issue of the journal Nature Genetics (27 July).

Although intensive research over the last decade has significantly improved the survival rates of children suffering from ALL, a subset of patients remains resistant to treatment. One example is the very aggressive and incurable subtype associated with a t(17;19) chromosomal translocation, which occurs due to breakage and aberrant fusion of genetic material in the tumor cells, resulting in the formation of a new oncogenic protein encoded by the genes TCF3 and HLF (TCF3-HLF-positive leukemia cells). Until now, the molecular basis of this phenotype has remained elusive. An international group of clinicians and scientists from different universities and research institutions, with contributions from the Berlin-based company Alacris Theranostics GmbH, has conducted an in-depth analysis of the molecular features of the t(17; 19) ALL subtype.

The consortium team decoded the genome of the leukemic cells using sophisticated bioinformatics methods. The team found genetic aberrations in addition to the known translocation. "We are glad that we could contribute to this important project with genomic data analysis of leukemia cells to unravel some of the molecular changes in this disease", says Bodo Lange (CEO, Alacris Theranostics). With the aim of identifying therapeutic entry points for this incurable form of ALL, the transcriptome of the cancer cells was also analyzed in great detail, enabling identification of the genes active within the leukemic cell. The so-called expression profile of the cancer cells was deciphered by means of RNAseq, a focus of research in Marie-Laure Yaspo's group at the Max Planck Institute for Molecular Genetics in Berlin. The interplay between the fused TCF3-HLF oncogenic protein, additional DNA changes and altered gene expression program leads to a re-programming of leukemic cells to an early, stem-cell like developmental stage, although the phenotypic appearance of the cells remains similar. "This technique provides a quantitative read out of the actual genetic program occurring in the cancer cells, which allowed us to uncover relevant molecular mechanisms cooperating to promote tumorigenesis, and to identify possible druggable targets. These findings could only be achieved through analysis of the messenger RNAs", says Marie-Laure Yaspo.

In tandem, researchers from the team of Jean-Pierre Bourquin (University Children's Hospital, Zürich) transplanted the leukemic cells in mice and established a "humanized mouse model", an invaluable tool for testing therapeutic response. The consortium team demonstrated that the mouse engrafted and expanded cells retained most of the genetic features and expression profiles of the original leukemic cells. The cells thus behaved in a similar manner than in the patient, offering an attractive possibility for translational medicine. The Zurich Group tested close to hundred drugs, and demonstrated a very positive response of the mouse model TCF3-HLF-positive cells to Venetoclax, a drug targeting the protein BCL2, and which has already showed efficiency in other type of cancers.

The results of this study show the strong potential of coordinated research between an international consortium and the use of new technologies for advancing cancer research. This project was made possible through the shared contribution of the research teams from Jean-Pierre Bourquin, University Children's Hospital Zürich, Martin Stanulla, Hannover Medical School, Arndt Borkhardt, Heinrich-Heine University, Düsseldorf, Jan Korbel, European Molecular Biology Laboratory (EMBL), Heidelberg, Andre Franke, Christian-Albrechts-University Kiel, and Marie-Laure Yaspo at the Max Planck Institute for Molecular Genetics in Berlin. Contributions to the genomic data analysis of leukemic cells came from the Berlin-based company Alacris Theranostics. The project was funded by the German Federal Office for Radiation Protection via the environmental research program of the German Federal Environment Ministry and by the Swiss National Science Foundation (SNF).

Source:

MC Services AG

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
No short-term benefit found for PCT-guided antibiotic treatment in children