Study reveals that miR-7 suppresses gastric cancer by inhibiting key signaling pathway

A study in The Journal of Cell Biology reveals that the microRNA miR-7 suppresses gastric (stomach) cancer by inhibiting a key signaling pathway, and that this protective mechanism is compromised by the cancer-causing bacterium H. pylori. Finding drugs capable of inducing miR-7 could therefore prove to be an effective treatment against the progression of gastric cancer.

Gastric cancer is the fourth most common cancer and the third leading cause of cancer-related deaths worldwide, according to the National Institutes of Health. miR-7, which is frequently decreased in gastric cancers, can stop the cancer cells from spreading to other tissues by inhibiting a particular growth factor receptor (called IGF1R). Whether miR-7 also suppresses earlier stages of gastric cancer is unknown, however, so researchers in China screened for new targets of the microRNA.

Dai-Ming Fan and colleagues found that miR-7 directly targets the genes RELA and FOS, which encode proteins involved in the pro-oncogenic NF-κB and AP-1 signaling pathways, respectively. In human gastric cancer samples, low miR-7 levels correlated with elevated levels of RELA and FOS proteins and poor patient survival. Increasing levels of miR-7 reduced RELA and FOS levels and inhibited tumor growth in mice.

The researchers found that, as well as directly suppressing RELA expression, miR-7 could control the protein's activation by targeting its upstream kinase (IKKε) in the NF-κB pathway. Yet, this same pathway was itself able to repress miR-7 expression, indicating that miR-7 would be unable to restrain RELA's activity if the NF-κB pathway were strongly activated.

Chronic H. pylori infection is a major risk factor for gastric cancer, in part because the bacterium can hyperactivate the NF-κB pathway. Accordingly, Fan and colleagues found that culturing H. pylori with gastric cells activated IKKε and RELA, and reduced the expression of miR-7, a potentially key step in the transformation of healthy gastric cells into malignant ones.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New target identified for potential colorectal cancer treatment