Researchers reveal molecular mechanism that controls remyelination

Researchers in Japan have revealed the molecular mechanism involved in the process of repair to damage of the myelin sheath.

In vertebrates, axons extending from nerve cells are covered by insulating sheets called the myelin sheath, made with the cell membranes of oligodendrocytes, enabling fast electrical signaling through saltatory conduction. Normally, myelin is repaired, even if damaged, but the mechanism that controls remyelination was not well understood. In addition, in demyelinating diseases such as multiple sclerosis, the myelin sheath does not recover from damage and gets worse, finally leading to symptoms such as vision loss, limb numbness, and movement disorders. The research group of Professor Masaharu Noda and colleagues of the National Institute for Basic Biology, a member institute of the National Institutes of Natural Sciences, performed a detailed examination of the remyelinating process of damaged myelin using disease model mice. Their results show that a growth factor called pleiotrophin is secreted from nerve axons injured by demyelination, and this pleiotrophin inhibits the function of the receptor molecule PTPRZ of oligodendrocyte precursor cells, stimulating cellular differentiation into oligodendrocytes which form the myelin sheath, thereby promoting remyelination.

This achievement shows that it is possible to encourage the regeneration of the myelin sheath by inhibiting the action of PTPRZ in endogenous oligodendrocyte precursor cells, indicating a new potential treatment for demyelinating diseases.

The results of this research were published in 'The Journal of Neuroscience' on September 2, 2015.

Professor Noda said "This achievement was made possible by establishing oligodendrocyte precursor cell lines. Pleiotrophin is an endogenous PTPRZ inhibitor, but if synthetic PTPRZ inhibitors were obtained, then effective treatments for multiple sclerosis should become possible. We are currently directing our research in that direction".

Source: National Institutes of Natural Sciences

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New long COVID index highlights five symptom subtypes