Study reveals mechanism behind protein-related diseases

Dartmouth researchers have found that some proteins turn into liquid droplets on the way to becoming toxic solids implicated in neurodegenerative diseases and other genetic disorders.

The findings, along with a series of related studies by scientists at other institutions, appear in the journal Molecular Cell. A PDF of the study is available on request.

The Dartmouth researchers studied proteins that have a massive expansion of a single amino acid, glutamine, typically associated with toxic protein solids. For example, neurodegenerative-linked proteins such as those in Huntington's disease have these amino acids, which makes the protein sticky. The researchers found that proteins like this undergo a transition into liquid droplets on the way to becoming toxic, fibrous solids. These liquid droplets are similar to the ones made when oil and vinegar are mixed to make salad dressing. The researchers suspect that cells use this liquid state for normal physiology, but under certain conditions the proteins transition again from liquid to toxic solids. These kinds of droplets have also been called "membrane-free" organelles because they lack a barrier and are highly dynamic unlike many organelles such as mitochondria or nuclei.

"We found that RNA, the molecule traditionally thought as the intermediate between DNA and protein, has a potent role in driving the formation of the liquid states," says senior author Amy Gladfelter, an associate professor of biological sciences. "They can drive the formation of droplets and give distinct physical properties to the droplets, which we think is important for how they are spatially arranged and function in the cell. It's exciting that this is an example of RNA encoding physical properties of these compartments or drops rather than just encoding proteins."

The results are important because the human genome is filled with proteins that have similar sequences and almost all understanding of these proteins so far has focused on pathological states.

"Our work, along with the other recent papers, find a form of these proteins that is relevant to normal cell function and yet takes advantage of the very sequences that are linked to diseases for their normal functions," Gladfelter says. "This type of mechanistic understanding of the protein's normal function is critical for understanding and treating a myriad of diseases linked to protein aggregation."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Nomic® and Parker Institute for Cancer Immunotherapy (PICI) launch large-scale protein profiling to investigate immunotherapy responses in RADIOHEAD study