Research sheds light on genetic factors involved in autoimmune diseases

A collaboration between researchers at the Babraham Institute and the University of Manchester has mapped the physical connections occurring in the genome to shed light on the parts of the genome involved in autoimmune diseases. Using a new technique, called Capture Hi-C, the team revealed novel insights into how changes in the genetic sequence have a biological effect and increase the risk of disease.

The human genome project provided the entire DNA code and large population studies have since identified which DNA sequence changes are associated with a range of diseases such as cancer, cardiovascular disease and immune system disease. Because many of these changes fall outside the parts of the genome that contain protein-coding genes, understanding the biological relevance of the genetic change was akin to the party game 'pin the tail on the donkey' when it came to identifying the genes that these regions associated with. Understanding these associations represents the key to uncovering the causal genetic factors of disease.

The new technique developed by researchers at the Babraham Institute identified a way to 'freeze-frame' the genome and capture its three dimensional conformation where the DNA folds to bring regions into close contact. This snapshot pinpoints where non-coding regulatory regions contact the genes that they control, often over large genomic distances. This technique gives the highest resolution view of the genome's interconnections available to date and allowed researchers to zoom in on and identify the genes affected by sequences changes in other parts of the genome.   

Using this approach allowed disease geneticists from the University of Manchester to identify novel candidate genes relating to the risk of developing autoimmune diseases such as rheumatoid arthritis and type 1 diabetes. Researcher Dr Stephen Eyre from the University of Manchester said "By looking at the genome's interactions in two immune cell types of relevance to autoimmune diseases we identified examples of disease-associated DNA changes that do not interact with the nearest genes, normally implicated by association, but rather with gene regulatory elements some distances away. This implicates an entirely different set of gene targets and provides a completely new insight into autoimmune diseases and, potentially, how to treat them."

Commenting on the use of the technique in this work, Dr Peter Fraser, Head of the Nuclear Dynamics research programme at the Babraham Institute, said "In order to be able to treat disease, we first need to fully understand what's happening at a biological level. Using our Capture Hi-C technique has revealed new genes that may cause autoimmune disease and this new knowledge will be essential in designing new future treatments. We believe that our technique holds the key to transform our knowledge of the genetic basis of other diseases too. From this knowledge comes the hope of improved and preventative treatments."

Source: http://www.babraham.ac.uk/

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study uncovers a previously unknown genetic link to autism spectrum disorder