McMaster University researchers take a giant leap in detecting early stages of leukemia

McMaster University researchers have taken a giant leap in identifying the early stages of a deadly cancer and predicting how it will develop in individuals.

"We've found that the transition from healthy to cancerous blood stem cells happens in clear, compartmentalized steps," said Mick Bhatia, principal investigator of the study and director of the McMaster Stem Cell and Cancer Research Institute. "We've identified two steps in that staircase."

In the paper published today by the scientific journal Cancer Cell, the researchers detail how they have been able to fingerprint myelodysplastic syndromes (MDS), a state for blood cells that turns into acute myeloid leukemia (AML) cancer in approximately 30% of patients. The study demonstrates that early and accurate prediction of this aggressive cancer is possible.

AML is the most common type of leukemia in adults, and about 1,300 Canadians are expected to develop the disease each year.

Bhatia's research team found when they deleted one version of the important GSK-3 gene, the other version of the gene became active but remained non-cancerous. However, when the second version of the gene was also deleted, AML cancer began.

To test this, Bhatia's team collaborated with Italian researchers at the University of Bologna to apply these initial findings to human blood samples that had been previously collected from patients with MDS, some of whom eventually developed AML. McMaster researchers did a retroactive study, and demonstrated that gene expression analysis of patient blood samples was accurate in predicting which patients would develop AML and which would not.

"This discovery improves our ability to identify which patients with MDS will develop AML," said Bhatia. "However, our next step is to go beyond better predictive measures for the development of a blood cancer, and use this predictive gene expression as a target for drugs to prevent AML from developing altogether. This will be part of a new era of genetic-based drug discovery."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Scientists identify drug-resistant bone marrow cells linked to poor outcomes in fast-growing leukemia