Study findings strongly point to independent control of sensory neurons during motor learning

Sensory neurons in human muscles provide important information used for the perception and control of movement. Learning to move in a novel context also relies on the brain's independent control of these sensors, not just of muscles, according to a new study published in the journal Current Biology.

Each muscle can have tens or hundreds of encapsulated sensory receptors, and these "sensors" are called muscle spindles. Spindles differ from other sensory receptors as they also receive nerve fibers from the central nervous system itself, which acts to control spindle output.

There are more nerve fibers travelling to and from spindles than to the actual muscle tissues generating force and powering movement. Despite more than a hundred years of research on this class of sensory receptors, however, it has been unclear how, why and when the nervous system chooses to independently control spindles.

"The findings strongly point to independent control of these sensors during motor learning," says Dr. Michael Dimitriou, who conducted the study and is a researcher at the Department of Integrative Medical Biology at Umea University in Sweden.

In this study, Dr. Dimitriou monitored spindle signals in humans while they learned to control the position of a visual cursor by moving their hand (much like using a computer mouse). Depending on what stage in the learning process, the spindles sent very different signals in response to virtually identical movements.

The research shows that the sensory capability of spindle neurons was adjusted according to the ongoing requirements of the task being learned. In other words, muscle spindle signal patterns were changed during the learning process to become selectively informative about different aspects of movement.

"It is well-known that effective extraction of information is a major component in good learning performance, and this is true in motor adaptation as well. Richer and more relevant sensory information from spindles allows for efficient update of the computational circuits in our brain that guide movement. Differing levels of skill in controlling muscle sensors is probably a factor defining individual differences in motor learning performance," says Dr. Dimitriou.

Beyond increased understanding of how human motor learning works, the current findings may also have more practical implications, such as in prosthetic limb and robotics control, argues Michael Dimitriou:

"To use a common example, computer algorithms can easily defeat a human in a game of chess. However, even the most sophisticated robot cannot match the skill and dexterity of a child in moving pieces on the chessboard. Better understanding of human sensory control is a way forward."

Source: Umea University

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Bioactive compounds in coffee and tobacco may combat Parkinson’s disease