Noise in concentration of vitamin A derivative RA can lead to disruptions in brain development

Using cutting-edge imaging technology, University of California, Irvine biologists have determined that uncontrolled fluctuations (known at "noise) in the concentration of the vitamin A derivative Retinoic acid (RA) can lead to disruptions in brain organization during development.

Identifying how a cell responds to a signal made by another cell, despite the level of noise present, may improve our understanding of developmental disorders.

Thomas F. Schilling, professor of developmental & cell biology, and his colleagues, published this study online at eLife (http://www.elifesciences.org/content/5/e14034v1).

During development, RA is an important secreted molecule that aids in the proper organization of the brain. The cellular response to RA depends upon its concentration, which is determined by its production, movement through tissue and interactions with many proteins within the cell. During normal development, cells can filter the "noise" in RA levels and establish appropriate brain organization. Schilling and study lead author Julian Sosnik wanted to measure the fluctuations in RA and determine how cells respond to the proper amount despite the presence of constant noise.

To accomplish this, they used fluorescence lifetime imaging to exploit the auto-fluorescent nature of RA and measure its distribution across the developing zebrafish embryo. The team found that RA forms a gradient in the embryo, with a lower concentration at the head. They also observed that a large amount of noise exists within the RA gradient.

They identified one protein within developing cells that interacts with RA to help reduce the noise. When this protein was altered, cells could no longer control the level of noise within the RA gradient, which led to disruptions in brain organization.

With this, the researchers concluded that noise reduction within cells is critical for the proper response to the RA gradient and normal organization of the brain.

Future studies will employ new transgenic technologies to examine levels of noise in the expression of genes responding to RA in developing brain cells and address potential beneficial roles for noise in helping switch cells from one type to another in this system.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study defines three subtypes of Chiari type-1 malformation to guide treatment