New, portable molecular imaging system combines optical imaging and scintigraphy

Bigger isn't always better, especially when it comes to a new and surprisingly portable molecular imaging system that combines optical imaging at the surface level and scintigraphy, which captures the physiological function of what lies beneath, announced developers at the 2016 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging (SNMMI).

The scintigraphy aspect of the scanner is comprised of a gamma camera that detects tiny radioactive signals emitted from the body after injection of a radionuclide, which interacts with specific physiological functions of the body, so that nuclear medicine physicians and their colleagues can extrapolate information from the radionuclide's activity.

Optical-gamma imaging could provide a multi-dimensional look at the body by allowing physicians to see a visual representation of molecular data in the same frame as optical images of the skin, the eyes and other surface organs. Unlike most hybrid imaging systems, which typically take up a lot of real estate in healthcare facilities, this technology is small enough to be easily portable.

"This research covers the first patient results obtained with the hybrid optical-gamma camera developed in the UK at the Universities of Leicester and Nottingham," said Alan Perkins, PhD, Radiological Sciences, University of Nottingham, Nottingham, United Kingdom. "This scanner has hand-held potential and can be used in a variety of settings, including the outpatient clinic, patient bedside, operating theatre and intensive care unit."

For this clinical pilot study, researchers imaged subjects undergoing routine molecular imaging procedures such as bone scans or imaging of the thyroid, eye or lymphatic system. The investigators optimized the image resolution and acquisition time to under five minutes by adopting a 1.5 millimeter-thick scintillator, which picks up gamma rays as they are emitted from within the body, and a 1 millimeter pin-hole collimator, which acts like an aperture to narrow focus on a particular field of view.

Results of the study showed that the optical-gamma camera was highly effective for imaging lymphatic and thyroid tissue, as well as drainage from the tear ducts, or lacrimal glands. Successful absorption of the radionuclides in these targeted areas was clearly seen in tandem with optical images of surface anatomy. This imaging system is still in development and requires further investigation before being made available to wider patient populations.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
AI-powered MRI predicts outcomes in prostate cancer