Portable biosensor can detect and amplify signal of harmful bacteria

Washington State University researchers have developed a portable biosensor that makes it easier to detect harmful bacteria.

The research team, led by Yuehe Lin, professor in the School of Mechanical and Materials Engineering, recently published the work in the journal, Small.

As in the case of several recent food recalls, harmful pathogens are most often only discovered when people start getting sick. Researchers have been working to develop better biosensors that could quickly, accurately and automatically detect everything from cancer biomarkers in the blood to harmful bacteria in the environment. Even tiny amounts of pathogens can create serious health risks, but the available sensors are unable to quickly and easily detect these quantities.

The WSU research team created a simple sensor that is able to detect and amplify the signal of the food pathogen Escherichia coli (E. coli) 0157:H7, which can cause severe diarrhea and kidney damage in people.

The key to a better sensor is maintaining a large amount of enzyme activity for detecting antigens in a sample. To address this issue, the researchers developed a particle at the nanoscale that includes organic and inorganic components and looks like a tiny flower. Smaller than a speck of dust and made up of a group of molecules, the nano-sized flower and petals provide a large surface area for immobilizing the highly active enzymes that are needed to detect the bacteria at low levels.

The nanoflower is able to recognize the bacteria and amplify its signal so that it can be seen with a simple handheld pH meter or pH indicator paper strip.

"We want to take these nanoflowers and create a simple-to-use, handheld device that anyone can use anywhere," said Lin. "It'll be as simple as using a pregnancy test strip or a glucose meter."

The researchers have filed a patent for the handheld device concept and are working to switch out components of the nanoflower to detect disease markers as well as other pathogens such as salmonella.

Source: Washington State University

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Insights into bacterial coexistence in fungal cells