Researchers identify key immune differences that could help in development of effective HIV vaccine

One of the main mysteries confounding development of an HIV vaccine is why some people infected with the virus make the desired antibodies after several years, but a vaccine can't seem to induce the same response.

A research team led by scientists at the Duke Human Vaccine Institute has been unraveling that mystery, detailing new insights in a study published July 29 in the journal Science Immunology.

Studying 100 HIV-infected people -- half whose immune systems eventually made antibodies capable of broadly neutralizing the virus and half whose immune systems did not -- the researchers found several key immune differences that should help in the development of a how-to manual for an effective vaccine.

"This work gives us the beginning of an understanding of the immune mechanisms that control development of broadly neutralizing antibodies, which is a major goal of a successful HIV vaccine," said Barton F. Haynes, M.D., director of the Duke Human Vaccine Institute and senior author of the study. "This moves forward important concepts for vaccine design to overcome a roadblock that has been present since we began this work 30 years ago."

In earlier work, Haynes and colleagues studied a person with both HIV and a form of lupus erythematosus, which is an autoimmune disease. The person's immune system both controlled the virus and developed broadly neutralizing antibodies.

The researchers have hypothesized that the same immune disruptions that caused the person to develop lupus were somehow enabling the broadly neutralizing antibodies to fulfill their potential and fight the virus.

Now, by directly studying large numbers of HIV-infected people whose immune systems made broadly neutralizing antibodies, the researchers found that they have similar immune alterations, or perturbations, as found in individuals with autoimmune disease.

"In essence, HIV cloaks its vulnerable sites that the immune system wants to see by making them resemble our own tissues, thereby creating an environment in which the virus is protected and the beneficial antibodies are treated as a threat to the body", said lead author Anthony Moody, M.D., chief medical officer of the Duke Human Vaccine Institute.

"These findings suggest that for a broadly neutralizing antibody-inducing HIV vaccine to be successful, we will need to mimic with vaccination the immune perturbations that occur in the setting of HIV infection," Haynes said.

"The important point here is that the first step to finding a way around a roadblock, is to be able to understand the biology behind the problem," Haynes said. "We now know what we need to do. The next step is to figure out how to safely mimic what happens in infection when the right antibodies are induced."

Source: Duke Health

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Pfizer-BioNTech vaccine provides strong protection against MIS-C in children aged 5–17