BGU researchers elucidate molecular mechanism that could lead to new therapies for ALS

Researchers from Ben-Gurion University of the Negev (BGU) have published a new study that describes a novel molecular mechanism that could lead to the development of new therapies for Amyotrophic Lateral Sclerosis (ALS). The study was published online in the prestigious PNAS (Proceedings of the National Academy of Sciences of the United States of America).

ALS, also known as Lou Gehrig's disease, is a fatal neurodegenerative disease that causes death of motor neurons, which control voluntary muscles. Progressive weakness and paralysis due to muscle atrophy lead to difficulty in speaking, swallowing and eventually breathing. The disease typically starts between ages 40 and 60, and the average survival from onset to death is two to five years.

The cause is not known in about 90 percent of cases, but approximately 10 percent are genetically inherited. Approximately 20 percent of these genetic cases are caused by mutations in the SOD1 gene (superoxide dismutase), which lead to the accumulation of "misfolded" SOD1 proteins that provoke selective killing of motor neurons.

"Correct protein folding is critically important, which is why we are focusing on the diverse set of complex cellular mechanisms, including molecular chaperones, that promote efficient folding and prevent toxicity," says Dr. Adrian Israelson, who heads the Cellular and Molecular Neurodegeneration Lab in the BGU Department of Physiology and Cell Biology.

For the first time, this study reported that "endogenous multifunctional protein macrophage migration inhibitory factor (MIF)," a gene that regulates cell inflammation and immunity, acts as a chaperone for misfolded SOD1 in a mouse model. The researchers demonstrated that completely eliminating MIF in a mutant SOD1 mouse model of familial ALS increased misfolded SOD1 accumulation. This also accelerated disease onset and late disease progression and shortened the lifespan of mice expressing mutant SOD1.

"This study provides insight into the potential therapeutic role of MIF in suppressing the selective accumulation of misfolded SOD1 in ALS by modulating MIF levels," Dr. Israelson says.

Dr. Israelson's lab focuses on cellular and molecular mechanisms that lead to the onset and progression of neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, with special emphasis on ALS.

Source:

American Associates, Ben-Gurion University of the Negev

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Engineered virus-like particles evolve for superior gene delivery efficiency