Researchers develop new way to design glycoclusters for targeted drug delivery

A team led by researchers at the RIKEN Biofunctional Synthetic Chemistry Laboratory in Japan has developed a way to engineer glycan complexes--clusters of sugar chains attached to proteins or lipids--in a way that allows the molecules to be transported preferentially to specific organs of the body, depending on the sugar chains contained in the cluster. According to Katsunori Tanaka, the leader of the team, this work, which was published in Advanced Science, could lead to the development of glycocluster-based diagnostic tools with better selectivity and precision than current tracers based on peptides and antibodies.

Chains of sugar molecules--called glycans--are found on the surfaces of cells, where they play important roles in controlling cell-to-cell communications and the recognition of foreign pathogens. It has long been known that these glycans form heterogenous clusters of different sugars, and that they form patterns that allow them to fit with certain proteins. However, researchers did not understand whether these pattern variations were simply random or played a purpose, influencing the movement of proteins and cells through the body.

To investigate this, the researchers used a method they developed, the RIKEN click method, to selectively attach two different glycans to a common protein--albumin--in specific patterns, where the sugars were ordered randomly or in a specific sequence. They then injected the resulting molecules, called heterogeneous glycoclusters, into mice. Following the administration, they used noninvasive imaging techniques to determine where in the body the conjugates traveled and how they were excreted. They then compared the results of their studies with these well-engineered glycans to homogenous glycoclusters--which only contain one type of glycan. They found that the heterogeneous glycoclusters exhibited special properties entirely different from homogeneous ones, such as being rapidly transported from the gallbladder to the intestine for excretion or accumulating selectively in the liver.

According to Tanaka, "This work shows that the heterogeneity of clusters does indeed play an important role in creating strong and selective binding in vivo. In the same way that burrs--and Velcro, which was developed based on the idea--attach powerfully even though each individual bond is weak, biological molecules often attach together using weak covalent bonds that together form a strong connection. In addition, using multiple glycan molecules--or in other words, heterogeneity--allows us to promote selective interactions with target molecules through pattern recognition. Hence, precisely controlling the configuration of the glycans may allow us to design new glycoconjugates that can be used to target certain tumors, for example."

Source:

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Diagnostic toolkit aims to improve response to Marburg virus cases