Optical fibers can identify and control neuroreceptors to rapidly inhibit chronic pain

Pain serves as a valuable warning signal, but when it becomes chronic, pain should be considered as a real disease.  An international team including research scientists from the CNRS and INSERM has identified and controlled one of the centers associated with chronic pain. This work, published on 20 December 2016 in Molecular Psychiatry, made it possible to relieve the symptoms in mice and demonstrated the ability of the brain to remedy this problem.

While around 20% of the European population has experienced episodes of chronic pain, treatments are only effective in fewer than half of them. This disease is nevertheless associated with modifications to the nervous system. The scientists therefore wanted to understand how the brain modulates physical pain and the affective and cognitive disorders that accompany it: anxiety, loss of positive emotions, hypersensitivity to pain, etc. During this study, they focused on the amygdala, a brain region involved in managing pain and emotions, and on the type-4 glutamate receptor (mGlu4). This is the principal transmitter of pain signals in the nervous system of mammals. This neuroreceptor detects the presence of glutamate and, depending on need, modulates its release at the synaptic level.

In order to study these receptors, scientists generally use a ligand that can activate or inhibit them. The team innovated by creating a specific, photo-controlled ligand, optogluram, whose action on mGlu4 is directed by light. The use of optical fibers then enabled them to achieve very precise control of the activation of this neuroreceptor in a particular region of the brain. The scientists worked on mice that were conscious and free to move around, but suffering from chronic inflammatory pain. By activating optogluram with light, they were able to rapidly and reversibly inhibit their painful symptoms, thus demonstrating that the brains of these mice preserved their ability to counteract these effects. By identifying a modulator that can act on chronic pain, this work raises hopes for the development of new therapies.

Source: CNRS (Délégation Paris Michel-Ange)

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Semaglutide reduces urine albumin-to-creatinine ratio in overweight chronic kidney disease patients