Researchers develop promising method for producing nanofibres to aid healing of bone fractures

In future, it may be possible to use nanofibres to improve the attachment of bone implants, or the fibres may be used directly to scaffold bone regeneration. This would aid the healing of fractures and may enable the care of osteoporosis. This is detailed in a new dissertation.

In his doctoral research, Jani Holopainen of the Department of Chemistry at the University of Helsinki has developed processes for fibrous and thin-film biomaterials that can be used as scaffolding for bone regeneration and in other bone impants. He also studied the apparatus used for nanofibre production.

Synthetic bone-like material

- At best, bone-reforming scaffolds that regenerate at the same rate as bones could be used as implants. The scaffolds activate the bone cells to generate new bone that slowly replaces the disintegrating scaffold and the impant exits the body naturally without separate removal surgery, Jani Holopainen says.

Holopainen selected hydroxyapatite, the main component of the bone mineral, as the focus of his research. This is why the synthetic hydroxyapatite structures he has developed are very compatible with bone.

Prototypes manufactured in Helsinki

Holopainen developed the electrospinning apparatus for producing hydroxyapatite fibres and a new kind of needleless twisted wire electrospinning setup, which is more productive than the generally known electrospinning method. The prototypes for the equipment used in the research were manufactured at the Department of Chemistry at the University of Helsinki. The equipment will have to be developed further in order to enhance production to an industrial scale.

- This promising method still has a long way to go before it will become a real medical application, though cellular tests have already been made, says Professor Mikko Ritala of the Department of Chemistry and the Atomic Layer Deposition centre of excellence at the University of Helsinki, who was the advisor of the doctoral research.

Source: Helsingin yliopisto (University of Helsinki)

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Experimental drug RK-33 shows promise in treating breast cancer bone metastasis