Researchers develop cell culture model that could help develop early treatment strategies for AMD

An international team from the University of Alabama at Birmingham and University College London and Queens University Belfast in the United Kingdom developed a cell culture model that could help to develop earlier treatment strategies for age-related macular degeneration, the third most prevalent cause of vision loss worldwide.

In AMD, which is twice as prevalent in older persons as Alzheimer's disease, the part of the retina used for detailed vision degenerates. Extracellular deposits rich in fats and proteins, called drusen, accumulate under support cells (retinal pigment epithelium) thus blocking transport between the photoreceptors and their blood supply.

Drusen are major early risk factors for both neovascularization and geographic atrophy. These are the late forms of AMD usually with irreversible vision loss, although neovascularization is managed with monthly injections in the eye. It is thought that understanding how drusen are formed is key to stopping these late complications.

Drusen do not occur naturally in laboratory animals, except in primates after several decades of life. Therefore a suitable cell culture model should accelerate the development of early treatment strategies. Previous cell culture models recapitulated several aspects of drusen formation except the formation of hydroxyapatite, a recently discovered key component of drusen growth.

In research published in Investigative Ophthalmology and Visual Science, a team led by Christine Curcio, Ph.D., Matthew Pilgrim, Ph.D., and Imre Lengyel, Ph.D., reported that retinal pigment epithelium cells removed directly from a pig eye can lay down all the major constituents of drusen: lipids, proteins and other trace elements, as well as hydroxyapatite when the cells are grown on specific surfaces. This model confirms the hypothesis that RPE cells in early AMD are functional, and that the conditions of the so-called Bruch's membrane on which retinal pigment epithelium cells grow in the eye is likely to be essential for drusen formation.

The team expects that a readily reproducible and valid model system will be an important step in determining what molecules in drusen, and what changes in retinal pigment epithelium cells living over drusen, promote advancement to late stages of AMD.

The elderly are the fastest-growing segment of the population, and new drug targets to help older persons maintain the good vision required for independent living are eagerly sought.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers discover how mutations disrupt protein splicing and cause disease