Study sheds light on role of brain region in social behavior and pathology in autism

Researchers at Rosalind Franklin University of Medicine and Science have induced empathy-like behavior by identifying then manipulating a brain circuit in an experimental model, an indication that new strategies may help people with autism spectrum disorder (ASD) gain social abilities.

According to the Centers for Disease Control, one in 68 children is living with an ASD, the fastest-growing developmental disorder in the U.S., with associated costs estimated at between $12 billion and $61 billion.

ASD can impair empathy, the ability to share and understand the feelings of others, which is aided by the ability to read facial expression, tone of voice and other social cues.

The study, led by Chicago Medical School Professor Amiel Rosenkranz, Department of Cellular and Molecular Pharmacology, sheds light on the specific role of the amygdala, an often overlooked brain region, in social behavior and its pathology in autism. There are no approved pharmacological approaches that target the social impairments in ASD. The development of new approaches requires a better understanding of the neural changes that cause the main symptoms of ASD. This study is a major step toward that goal.

Published Jan. 23 in the journal Nature Neuroscience, the findings change the conceptualization of the brain regions important in empathy and provide the rationale to target the amygdala in certain forms of ASD.

Investigators measured the empathy-like responses of a rodent while witnessing an "actor" rodent respond to a mild "startle." The "witness" quickly developed behaviors that matched the startled subject, reflecting a behavior that is a foundation for empathy. In addition, the witness learned that the emotional cues produced by the actor indicate that something in the environment may be dangerous. However, when parts of the amygdala were shut down, the witness did not show empathy-like responses toward the other. Specifically, the medial amygdala was required for the witness to display empathy, while a circuit from the lateral nucleus of the amygdala to the medial (LA-MeA) was required to learn that the behavior of the actor signaled danger in the environment.

To gain insight into the relevance of these findings for ASD, the study then examined impaired empathy caused by experimental deletion of Nrxn1, an analog of a human autism-associated gene (NRXN). Deletion of Nrxn1 was associated with a lack of empathy-like behavior in the witness, which investigators found to be correlated with poor neuronal function in the LA-MeA circuit. Switching on the LA-MeA circuit in the non-empathic witness led to the emergence of empathic behaviors. The findings identify a specific anatomy in the amygdala that may underlie empathy and demonstrate a particular pathology in the amygdala that may induce social difficulties caused by autism-related mutations.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New study unveils why glioblastoma becomes resistant to treatment