Breakthrough brain repair discovery could revolutionise treatment of Multiple Sclerosis

Queen's University Belfast scientists have discovered that specific cells from the immune system are key players in brain repair - a fundamental breakthrough that could revolutionise the treatment of debilitating neurological disorders such as Multiple Sclerosis (MS).

The research study, led by Dr Yvonne Dombrowski and Dr Denise Fitzgerald at the Wellcome-Wolfson Institute for Experimental Medicine at Queen's University Belfast, is being hailed as a landmark study in unravelling the mysteries of how the brain repairs damage. This is crucial in the fight against MS, which affects 2.3 million people world-wide and over 4,500 people in Northern Ireland.

MS is the most common neurological disease affecting young adults and is the result of damage to myelin, the protective sheath surrounding nerve fibres of the central nervous system - the brain, spinal cord and optic nerve. In MS, the immune system wrongly attacks the myelin sheath covering nerve fibres in the brain and spinal cord, which can lead to symptoms such as vision loss, pain, fatigue and paralysis.

Until now, medical treatment could limit relapses but could not reverse the damage already done by the condition. The exciting aspect of this new research is that the team have uncovered beneficial effects of immune cells in myelin repair that have potential to reverse myelin damage. The study was an international collaboration including experts in Cambridge, San Francisco, Edinburgh, Maynooth and Nice.

The research breakthrough, which has been published today in Nature Neuroscience, shows that a protein made by certain cells within the immune system triggers the brain's stem cells to mature into oligodendrocytes that repair myelin.

The discovery means that researchers can now use this new knowledge to develop medicines which will boost these particular cells and develop an entirely new class of treatments for the future.

Speaking about the importance of the new research, Dr Dombrowski, who is the lead author of the report, explained: "At Queen's we are taking a unique and fresh approach to uncover how the immune system drives brain repair. This knowledge is essential to designing future treatments that tackle neurological diseases, such as MS, in a new way - repairing damage rather than only reducing attacks. In the future, combining these approaches will deliver better outcomes for patients."

Senior author of the study, Dr Denise Fitzgerald from Queen's, experienced a condition similar to MS, called Transverse Myelitis when she was 21 and had to learn to walk again.

Commenting on the findings, Dr Fitzgerald said: "This pioneering research, led by our team at Queen's, is an exciting collaboration of top scientists from different disciplines at Cambridge, San Francisco, Edinburgh, Maynooth and Nice. It is by bringing together these experts from immunology, neuroscience and stem cell biology that we have been able to make this landmark discovery.

"This is an important step forward in understanding how the brain and spinal cord is naturally repaired and opens up new therapeutic potential for myelin regeneration in patients. We continue to work together to advance knowledge and push the boundaries of scientific knowledge for the benefits of patients and society, in a bid to change lives for the better, across the globe."

Dr Sorrel Bickley, Head of Biomedical Research at the MS Society, said: "MS is an unpredictable and challenging condition, and we are committed to driving forward research to find effective treatments for everyone. This exciting study gives us an important understanding of how myelin repair can be promoted, which could open up new areas for treatment development. We welcome this international collaboration led by Northern Ireland, where rates of MS are amongst the highest in the world."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study defines three subtypes of Chiari type-1 malformation to guide treatment