Lab-on-a-chip designed to predict woman's risk of preterm birth

In the United States alone, a half million babies are born preterm; worldwide, the number is an estimated 15 million. Complications associated with preterm birth are the no. 1 cause of death for children under 5, and those who live often face a range of health problems.

But with help from a palm-sized plastic rectangle with a few pinholes in it, Brigham Young University researchers are hoping to minimize the problem of premature deliveries. The small chip -- integrated microfluidic device if you speak chemistry -- is designed to predict, with up to 90 percent accuracy, a woman's risk for a future preterm birth.

"It's like we're shrinking a whole laboratory and fitting it into one small microchip," said BYU chemistry Ph.D. student Mukul Sonker, who is the lead author of a study recently published in Electrophoresis and funded in part by the National Institutes of Health.

The goal for the device is to take a finger-prick's worth of blood and measure a panel of nine identified preterm birth biomarkers -- essentially biological flags that can tip people off to diseases or other conditions. There aren't any current biomarker-based diagnostics for preterm births, and doctors typically only keep tabs on women who have other clear risk factors.

For the most part, "the symptom of preterm labor is a woman goes into labor, and at that point you're managing the outcome instead of trying to prepare for it," said Adam Woolley, BYU chemistry professor, and study co-author.

With their oldest child, Woolley's wife began having contractions early in her third trimester. With the help of hospital intervention, eventually her contractions stopped and she was able to carry their son full term. "Ours was only a glimpse into the potential problems of a preterm birth, but it is still really satisfying to know that the research my students and I are doing now could help others in some way with this important medical issue."

There's still work to be done at the front end of the process, but for this study, Sonker and Woolley, along with BYU post-docs Radim Knob and Vishal Sahore, created the chip and a system for preconcentrating and separating biomarkers on it. That's important, explained Sonker, "because when you look at these proteins and peptides, they're present in such a trace amount, but if you preconcentrate them on the chip, you can get enough of a signal for prediction."

Among other benefits, the device is cheap, small and fast: once fully developed, said Woolley, "it will help make detecting biomarkers a simple, automated task."

Some peg the annual costs associated with preterm birth just in the United States at close to $30 billion, so one clear perk of such a screening tool, said Woolley, is economic. More significantly, he added, "there are a lot of preterm babies who don't survive: if we could get them to survive and thrive, it would be a huge gain to society."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Survey reveals alarming dental decay rates in Kentucky preschoolers