New study evaluates two additive manufacturing methods for producing fine or coarse textured implants

A new study evaluated two additive manufacturing methods for producing either fine or coarse textured titanium implants and compared the strength of bone integration, interlocking, and torque in rats given one or both types of the implants in the distal femurs. The ability to apply this technology to customize implant surface textures and geometries to match the specific anatomy of human amputees is increasingly important as the trend in prosthetic devices moves toward transcutaneous osseointegrated implants rather than socket-cup fitting devices, according to an article published in 3D Printing and Additive Manufacturing, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the 3D Printing and Additive Manufacturing website until July 20, 2017.

The article entitled "Osseointegration of Coarse and Fine Textured Implants Manufactured by Electron Beam Melting and Direct Metal Laser Sintering" is coauthored by David Ruppert, Ola Harrysson, PhD, Denis Marcellin-Little, DEDV, Sam Abumoussa, Laurence Dahners, MD, and Paul Weinhold, PhD, University of North Carolina (UNC), UNC School of Medicine, Chapel Hill; North Carolina State University (NCSU) and NCSU College of Veterinary Medicine, Raleigh.

Electron beam melting produces a coarse textured implant, whereas direct metal laser sintering can create either a fine or coarse textured surface. The researchers reported substantial differences between the two fine and coarse implants based on mechanical testing to assess osseointegration and torsional properties, and measures of bone volume fraction and bone-implant contact.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Cellular Origins, Fresenius Kabi sign development agreement for scalable automation of cell and gene therapy manufacturing