Low oxygen, not blood flow, may contribute to major disturbances in the brain of preterm infants

Premature infants are at risk for a broad spectrum of life-long cognitive and learning disabilities. Historically, these conditions were believed to be the result of lack of blood flow to the brain. However, a new study published in the Journal of Neuroscience, finds that while limited blood flow may contribute, major disturbances are actually caused by low oxygen. Study: http://www.jneurosci.org/content/early/2017/10/31/JNEUROSCI.2396-17.2017

This research challenges more than a decade of scientific study and clinical understanding of brain development in preterm children, said the study's principal investigator Stephen Back, M.D., Ph.D., Clyde and Elda Munson Professor of Pediatric Research and Pediatrics, OHSU School of Medicine, OHSU Doernbecher.

"Previously, we thought lack of blood flow was causing preterm brain cells to die. Instead, these critically important cells simply fail to develop normally. This finding creates an opportunity to determine ways to restore oxygen loss and potentially reduce life-long impacts of preterm survivors."

Utilizing a preterm sheep model, Back and his team analyzed the response of fetal subplate neurons - cells that play a critical role in regulating preterm brain function and connectivity -- to disturbances of brain oxygenation. When the developing brain was exposed to lower than normal rates of oxygen for as short as 25 minutes, subplate neurons showed major long-term disturbances just one month following exposure.

"This brief exposure to low oxygen occurs frequently in preterm babies receiving care in a neonatal intensive care unit," said Back. "And this result better explains the long-term complications that these preterm babies sustain as they grow older, which include significant challenges with learning, memory and attention."

Although additional research is needed to determine the exact developmental timeframes for potential injury due to oxygen loss in infants, as well as the optimal concentration of oxygen necessary for early intervention therapies, Back believes these findings suggest a need to re-evaluate current practices in intensive care settings.

"Given this new range of opportunity to promote brain repair, clinicians must critically rethink how to interact with, stimulate and handle preterm babies during intensive care treatment. This will help to better manage transient low-oxygen states and determine what the preterm brain can and cannot tolerate."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
CeVD-related brain network phenotype can provide insights into cognitive decline trajectory