KU Leuven researchers unravel how cell division timer works

Human cells use a timer to divide: each cell gets at least 30 minutes to divide its genetic material between the nuclei of two daughter cells. Researchers at KU Leuven, Belgium, have unravelled how this timer is switched on and off. Their findings open up perspectives for the treatment of cancer, as keeping the timer going would stop cancer cells from dividing.

Our body is constantly building new tissue and replacing dead or damaged cells through cell division. Skin cells, for instance, only last about a month before they are replaced by newly divided cells. Scientists already knew that cells have a built-in timer ensuring that their division takes at least half an hour. But the underlying mechanism of this timer was still a mystery.

In cell division, it's all about evenly distributing the chromosomes between the daughter cells, says senior author Mathieu Bollen from the KU Leuven Laboratory of Biosignaling & Therapeutics. "First, the chromosomes of a cell are duplicated. Two spindles with so-called microtubules then attach to these chromosomes, allowing the two copies of each chromosome to be separated and pulled into opposite directions. This is how the chromosomes are evenly divided between two new cell nuclei. Then the actual division takes place, creating two daughter cells that are genetically identical to the parent cell."

If everything has gone well, that is. And that's not usually the case right away. "Temporary issues with attachment of microtubules to the replicated chromosomes are common. Sometimes there's a missing link so that a chromosome does not end up in a daughter cell. In other cases, the microtubules pull both copies towards the same daughter cell. The result is a daughter cell with one chromosome too few or too many. These little errors usually cause the cell to die. But they may also speed up the cell division process, as is sometimes the case in cancer cells."

Dr Junbin Qian, the first author of the paper, found that the timer gives cells the time to fix attachment-related problems. "At the start of the cell division process, the biochemical clock starts ticking when a phosphate group is attached to a key protein. About half an hour later, this phosphate group is removed again. All the while, the distribution of the chromosomes is on hold, allowing the cell to add missing links and fix wrong ones."

The timer has potential for cancer therapy, Bollen continues. "You want to prevent cancer cells from dividing and spreading. Some of the current cancer therapies target the microtubules in the cell. One example is the drug Taxol, which is produced from yew clippings. Unfortunately, such drugs are toxic and have many unwanted side-effects. Cancer cells are also building resistance to these substances. Now that we know how the cell division timer works, we can start looking for drugs that keep the timer switched on: this brings cell division to a standstill, eventually causing the cancer cells to die. Together with existing treatment methods, this could form an effective combination therapy, because you'd be attacking the cancer cells on several fronts."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Mapping human biology: Human Cell Atlas leads a new era in precision medicine