Lack of sunlight may be to blame for winter weight gain

We may have a new reason, in addition to vitamin D generation, to bask in a little sunshine.

A breakthrough study by University of Alberta researchers has shown the fat cells that lie just beneath our skin shrink when exposed to the blue light emitted by the sun.

"When the sun's blue light wavelengths--the light we can see with our eye--penetrate our skin and reach the fat cells just beneath, lipid droplets reduce in size and are released out of the cell. In other words, our cells don't store as much fat," said Peter Light, senior author of the study, who is a professor of pharmacology and the director of UAlberta's Alberta Diabetes Institute.

"If you flip our findings around, the insufficient sunlight exposure we get eight months of the year living in a northern climate may be promoting fat storage and contribute to the typical weight gain some of us have over winter," he added.

Light cautions the finding is only an initial observation and that pursuing exposure to sunlight is not a safe or recommended way to lose weight.

"For example, we don't yet know the intensity and duration of light necessary for this pathway to be activated."

However, he added the novel discovery opens up new avenues of future scientific exploration which could some day lead to pharmacological or light-based treatments for obesity and other related health issues such as diabetes.

"Maybe this mechanism contributes to setting the number of fat cells we produce in childhood -- thought to stay with us into adulthood," he speculated.

"Obviously, there is a lot of literature out there suggesting our current generation will be more overweight than their parents and maybe this feeds into the debate about what is healthy sunshine exposure."

The researchers made the discovery while investigating how to bioengineer fat cells to produce insulin in response to light to help Type 1 diabetes patients.

"It was serendipitous," said Light, adding that his name is an ironic coincidence since light was not his primary field of research. "We noticed the reaction in human tissue cells in our negative control experiments, and since there was nothing in the literature, we knew it was important to investigate further."

Based on the finding, the fat cells we store near our skin may be a peripheral biological clock, said Light.

"It's early days, but it's not a giant leap to suppose that the light that regulates our circadian rhythm, received through our eyes, may also have the same impact through the fat cells near our skin."

He explained that the molecular pathway they discovered was first identified as being activated by the eye when exposed to the blue wavelengths in sunlight.

"That's why you are not supposed to look at digital devices before bed because they emit the same blue light the sun does, that signals us to wake up," he explained.

"Well, perhaps that pathway -- exposure to sunlight that directs our sleep-wake patterns-- may also act in a sensory manner, setting the amount of fat humans burn depending on the season. You gain weight in the winter, and then burn it off in the summer."

This could be evolutionary process, supported by the fact that unlike many other mammals, our fat is spread out all over our bodies just underneath our skin, he added.

"Our initial first observation certainly holds many fascinating clues for our team and others around the world to explore."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Engineered SNIPRs transform CAR T-cell precision for safer cancer therapy