Researchers discover key enzyme driving breast cancer

Looking to identify new strategies to prevent breast cancer recurrence, a research team led by Subhamoy Dasgupta, PhD, Assistant Professor of Oncology in the Department of Cell Stress Biology at Roswell Park Comprehensive Cancer Center, has identified two key proteins involved in glucose metabolism that could be targeted to prevent breast cancer metastasis and recurrence. The team's findings were published today in the journal Nature.

Rapid growth and proliferation are hallmarks of cancer cells, which require a large amount of glucose to meet their energy needs. Because the majority of advanced breast tumors are notably dependent on glucose metabolism, strategies that alter the metabolic pathways of cancer cells can be used to improve outcomes and prevent metastasis or recurrence in patients with breast cancer.

Working with Bert O'Malley, MD, and other researchers from Baylor College of Medicine in Houston, where this work originated, Dr. Dasgupta screened over 600 proteins and identified PFKFB4, an enzymatic protein involved in the glucose metabolic pathway, as the strongest activator of SRC-3, a protein known to drive cancer progression and metastasis. Breast cancer patients whose tumors express SRC-3 generally have a poor prognosis, suggesting that therapies targeting these two proteins or blocking their interaction could have a broad and significant impact on breast cancer treatment.

"The enzyme PFKFB4 acts as a molecular fulcrum stimulating the activation of SRC-3, which promotes growth of very aggressive metastatic tumors," explains Dr. Dasgupta, first author on the study. "Remarkably, we also found that the expression of PFKFB4 is significantly enhanced across all types of breast cancer. This research suggests that the development of strategies targeting the PFKFB4-SRC-3 pathway could be used to prevent the growth, recurrence and spread of many, if not all, types of breast cancer tumors."​

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New drug cocktail enhances CAR-T cells for cancer treatment