Novel method enables fast and noninvasive assessment of tumor status

How aggressive is a tumor? To measure the tumor status without taking tissue samples, Italian researchers have developed a method based on magnetic resonance imaging (MRI) of whole body parts. The technique measures proton nuclear resonance dispersion profiles at low magnetic fields, which reveals the water exchange rate of the tumor cells. Thus, tumor development can be monitored rapidly and noninvasively, say the authors of the study published in the journal Angewandte Chemie.

Clinically used high-field MRI can produce images of tumors with excellent spatial resolution. The images are acquired at a fixed magnetic field and reveal valuable data on the tumor morphology. However, dynamic processes such as tumor physiology and metabolism are not as easy to assess. This is a limitation that has been partially overcome by the administration of contrast agents, but a more direct method lies in the technique itself. Researcher Simonetta Geninatti Crich at the University of Torino, Italy, and her colleagues used a field-cycling nuclear magnetic resonance (NMR) setup to measure the nuclear relaxation rates at low magnetic fields and found a clear correlation between the water dynamics and the tumor types.

NMR fast field cycling techniques measure the relaxation time of protons, the dispersion profiles, after a sequence of magnetic cycles in a magnetic field. Depending on the strength of the magnetic field, different proton conditions can be probed. Water dynamics in a tumor, for example, are only accessible at the variable and low magnetic fields produced with these cycling techniques. In this study, the team used an adapted NMR instrument, which switches between different field strengths, for data acquisition on tumors in animal models. As a result, three different tumor models and healthy muscle tissue (the tumors were implemented in a leg of a mouse) produced distinct proton relaxation curves.

After analyzing the kinetics of the curves, the researchers identified three underlying scenarios: slow water exchange rate, fast exchange, and an intermediate exchange rate with contributions from both intra- and extracellular compartments. A fast exchange indicates a high metabolic rate and thus a high activity of the tumor cell. "This increased metabolic activity is characteristic for aggressive and highly metastatic tumor cells" says Prof. Geninatti Crich. The tumor cells relieve their high metabolic pressure through an enhanced water exchange with the exterior of the cell. This parameter is now directly accessible with this technique, as the scientists have proved.

The method enabled the direct, fast, and noninvasive assessment of the tumor status. The scientists describe the method as "a possibility for new diagnostic opportunities in oncology". They plan to adopt it in the fast field cycling MRI technologies that are currently developed for clinical use.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Cancer cells block T-cell activation, but new therapies restore immune defenses