Study examines efficacy of 3D printing, computer modeling to predict paravalvular leak in TAVR

A new study examines the effectiveness of 3D printing technology and computer modeling to predict paravalvular leak (PVL) in patients undergoing transcatheter aortic valve replacement (TAVR). A common risk of TAVR is an ill-fitting valve which can lead to PVL. To address this risk, the study used 3D printing technology to help confirm and detect the location of the leak. The retrospective study was presented today at the Society for Cardiovascular Angiography and Interventions (SCAI) Scientific Sessions.

More than five million Americans are diagnosed with heart valve disease each year (

In the study, six patients undergoing TAVR for severe, calcific aortic stenosis and at risk for paravalvular leak had pre-procedure computed tomography (CT) images analyzed and segmented for printing of 3D models. The CT scans allowed researchers to see a 360-degree view of the location of the calcium build up while the 3D models allowed researchers to further evaluate the ill-fitting valves. The 3D aortic root models were then implanted with the valve to determine if the size was correct, ultimately revealing where the calcium composites would be. The 3D models were scanned, evaluated for final analysis and then compared to in-vivo implanted TAVR echocardiograms.

Every leak seen on the 3D models were confirmed on the CT digital scans. The 3D models allowed researchers to use prototypes to personalize valve placement, size and location to stop leaks and lower calcium build up.

"We are very encouraged to see such positive outcomes for the feasibility of 3D printing in patients with heart valve disease. These patients are at a high risk of developing a leak after TAVR, and anything we can do to identify and prevent these leaks from happening is certainly helpful," said lead author Sergey Gurevich, MD, and Cardiovascular Fellow at the University of Minnesota in Minneapolis, MN. "Like any other new technology, as 3D printing evolves, we hope to see an increase in accessibility and opportunity for the use of this technology to help improve patient care."

The authors call for a functional study to help determine the exact size of the leak. The authors of this study are working with computational fluid dynamics to optimize calculations.​​

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study reveals variability in polygenic risk scores for predicting heart disease