Researchers uncover protein linked to breast cancer metastasis

Jean-François Côté, a researcher at the Montreal Clinical Research Institute (IRCM) and professor at Université de Montréal's Faculty of Medicine, studies metastasis, the leading cause of cancer-related death. Recently, his team uncovered a protein that, once deactivated, could prevent the development of metastases in an aggressive type of cancer, HER2-positive breast cancer.

One in eight women will be diagnosed with breast cancer in her lifetime and one in 30 is expected to die from it. The findings, published in the journal Cell Reports, could improve this prognosis.

'Cunning' cells

A cancerous tumor develops when cells proliferate at an abnormally high rate and agglomerate in healthy tissue. Some of these cells are even more cunning. "Sometimes, cancer cells manage to leave the tumor to spread in the body, which complicates the evolution of the disease," said Côté, director of the IRCM's Cytoskeletal Organization and Cell Migration Research Unit.

These cells move more easily than most of their peers. They detach from the tumor, enter the bloodstream and reach other organs, for example the lungs, bones or the brain. Called 'metastatic cells,' they are more difficult to destroy as they spread to other parts of the body and are more resistant to current treatments; 90 percent of breast-cancer deaths are caused by metastases. Hence, one priority in oncology is to prevent tumor cells from spreading because it has the potential of saving many lives.

A promising target

Côté and his collaborators have taken a step towards actually blocking metastases. In their study, the IRCM team demonstrated that a protein, AXL, influences the occurrence of metastasis in HER2-positive cancer, an aggressive type that accounts for 20 percent of breast cancers. In HER2-positive breast cancers, cells with high levels of AXL are more likely to detach from tumors to form metastases.

The research was done on mice and with samples of tumor cells taken from cancer patients in Montreal. Statistical indicators about patients are also encouraging. In women with HER2-positive cancer, it was found that the less AXL is present, the better the survival rate. Previously, researchers had linked the AXL protein to another type of cancer, triple negative breast cancer, but no one had examined its presence in HER2-positive cancer before Côté and his team.

"Based on this discovery, a treatment targeting AXL could reduce the risk of metastasis," said Côté.

It has already been shown that the action of AXL can be hindered. The IRCM researchers administered an AXL-inhibiting drug therapy to mice with HER2-positive tumors and found that metastases were less prone to develop. The drug is currently being tested in clinical trials for various therapeutic uses. If subsequent studies are as successful, this treatment could also be used to treat breast cancer patients. It would act as a complement to therapies targeting the HER2-positive tumor.

Further work is already underway in the IRCM laboratory.

"At the moment, we are checking whether the tumor's environment, such as blood vessels and the immune system, is affected when AXL is inhibited," said Côté. By getting a better picture of the phenomenon, it will be one more step towards treating the disease.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Novel bladder cancer treatment gains MHRA approval in the UK