Research sheds light on pathways involved in transmitting itch sensations from skin to brain

Researchers from North Carolina State University have pinpointed a particular neuropeptide associated with transmitting itch signals in mice with atopic dermatitis. The work sheds further light on the pathways involved in transmitting itch sensations from the peripheral (skin) to the central (spinal cord) nervous system.

"You can think of itch being transmitted from the skin to the brain as a series of switches that get flipped," says Santosh Mishra, assistant professor of neuroscience at NC State. "The signal goes from neuronal projections in the skin through the dorsal root ganglia (DRG) - which are clusters of sensory cells located at the root of the spinal nerves - then to the spinal cord. We're interested in finding out how the portion of this pathway from DRG to spinal cord works in terms of signaling itchiness in chronic skin disease."

Atopic dermatitis, sometimes referred to as eczema, is a chronic skin condition that causes persistent itching. Mishra and his team looked at a protein, or cytokine, called interleukin-31 (IL-31), which is overproduced in patients with atopic dermatitis and is involved in triggering itch response.

"We know that when IL-31 binds to the receptor present on neuronal projections in the skin, those neurons signal a subset of neurons in the DRG called the TRPV-1, which then signal the spinal cord," Mishra says. "We wanted to figure out which neuropeptide was involved in the 'switch' between the DRG and the spinal cord."

The team looked at the neuropeptide Natriuretic polypeptide B (NPPB), which is released by TRPV-1 neurons in the DRG when IL-31 binds to receptors in the skin. To test whether NPPB was involved in itch signaling to the spinal cord, Mishra and his team used IL-31 to trigger itchiness in mice. They compared wild-type mice to mice without NPPB receptors and mice that could not produce NPPB. They found that itching decreased by 70 to 80 percent in mice without the neuropeptide NPPB or its receptor, indicating that NPPB did play a role in the itch-signaling pathway.

"Our work shows that NPBB does act on the neurons in the spinal cord, and that it plays an important role in this signaling pathway," Mishra says. "Our next steps will be to build on this work, because the neurons that express NPBB can express more than one neuropeptide. Perhaps we will be able to identify another receptor involved in the link between the peripheral and central nervous system for chronic itch associated with eczema."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Vitamin D receptor activation slows cell overgrowth in pulmonary hypertension