Study explains methods for matrix decellularization to promote bone regeneration

To help prevent possible complications such as nonunion at large fracture sites, researchers have developed a cartilage matrix that mimics the early stages of repair and provides the essential structural and biological properties needed by bone-forming cells to divide and grow. A new study describing the methods used for matrix decellularization and optimization to promote bone regeneration is published in Tissue Engineering, Part A, peer-reviewed journal fromMary Ann Liebert, Inc., publishers. The article is available free on the Tissue Engineeringwebsite until July 22, 2018.

Coauthors Wollis Vas, Mittal Shah, Thomas Blacker, Michael Duchen, and Scott Roberts, University College London, U.K. and Paul Sibbons, Northwick Park Hospital, London, U.K. validate their methodology and report on regenerative results achieved in a mouse model in the article entitled "Decellularized Cartilage Directs Chondrogenic Differentiation: Creation of a Fracture Callus Mimetic." The researchers describe the effectiveness of a vacuum-assisted osmotic shock approach to remove the decellular material - including DNA and immunogenic material - from a xenogeneic hyaline cartilage matrix while retaining the extracellular matrix (ECM), which can support the growth and development of bone tissue.

"The approach by Roberts and his team, utilizing costal cartilage - accessible from the ribs and particularly well suited as the basis for an endochondral ossification bone repair mechanism - is an innovative approach that may be quickly translated into clinical use," says Tissue Engineering Co-Editor-in-ChiefJohn P. Fisher, PhD, Fischell Family Distinguished Professor & Department Chair, and Director of the NIH Center for Engineering Complex Tissues at the University of Maryland.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Vitamin D during pregnancy boosts childhood bone health for years, study shows