Sweetness depends on molecular interactions between specific sugars and water in saliva

A cranberry, honey or a candy bar - which tastes the sweetest? These foods contain sugars that humans can perceive differently. A cranberry seems tart, whereas a candy bar can be excessively sweet, and honey is somewhere in the middle. Now, in a study in ACS' The Journal of Physical Chemistry Letters, researchers have shown that the perception of sweetness depends on molecular interactions between specific sugars and water in the saliva.

The sugars mannose, glucose and fructose have almost identical chemical structures. Yet fructose (found in many candy bars) is about twice as sweet as glucose (found in honey), whereas mannose (found in cranberries) is considered tasteless. Sugars stimulate specific protein receptors on the taste buds of the tongue, which sends a signal to the brain that a food tastes sweet. But scientists don't know why we perceive some sugars as being sweeter than others. Because these interactions take place in saliva, which is mostly water, Maria Antonietta Ricci and colleagues wondered if water might play a role.

The researchers used a technique called neutron diffraction with isotopic substitution to probe the structures of mannose, glucose and fructose in water. They found that none of the sugars substantially disrupted how water molecules interact with each other. However, the three sugars interacted with water molecules in different ways. Mannose, the least sweet of the sugars, formed longer and weaker hydrogen bonds with water than glucose or fructose. Fructose, the sweetest of the sugars, formed the shortest and strongest hydrogen bonds with water. The researchers surmise that shorter hydrogen bonds with water could allow the sugar molecule to bind more snugly with the protein receptor, causing greater stimulation and perception of sweetness.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Breakthrough discovery could lead to effective vaccine for S. aureus